The Role of Biosphere-atmosphere-ocean Interactions in Regulating Precipitation Variability Over West Africa

The Role of Biosphere-atmosphere-ocean Interactions in Regulating Precipitation Variability Over West Africa
Title The Role of Biosphere-atmosphere-ocean Interactions in Regulating Precipitation Variability Over West Africa PDF eBook
Author Luis Tomás Pérez-Prado
Publisher
Pages 102
Release 2000
Genre
ISBN

Download The Role of Biosphere-atmosphere-ocean Interactions in Regulating Precipitation Variability Over West Africa Book in PDF, Epub and Kindle

Land-atmosphere Interactions and Regional Climate in West Africa and South America

Land-atmosphere Interactions and Regional Climate in West Africa and South America
Title Land-atmosphere Interactions and Regional Climate in West Africa and South America PDF eBook
Author Amir Erfanian Javadian Entezar Yazd
Publisher
Pages
Release 2017
Genre Electronic dissertations
ISBN

Download Land-atmosphere Interactions and Regional Climate in West Africa and South America Book in PDF, Epub and Kindle

Land, atmosphere, and oceans interact with each other through energy, mass, and momentum exchanges. These interactions regulate climate variability and influence climate changes at the regional scale. One notable example of highly influential land-atmosphere-ocean interactions on regional climates is monsoonal systems that influence a substantial portion of the world’s population. In this dissertation, the present and future climates of West Africa (WA) and South America (SA), two important monsoon regions, were studied utilizing Regional and Global Climate Models (RCMs and GCMs), mathematical techniques and data mining tools, and observational data (in-situ, remote-sensing, and reanalysis). The objective is to advance our understanding on the role of land-atmosphere-ocean feedbacks, especially vegetation-climate interactions, in the climate variability, change, and extremes over these regions. Special attention was given to the improvement of climate simulations and reliability of future climate projections by quantifying and/or reducing uncertainties from multiple sources. As part of this dissertation, two new approaches concerning regional climate modeling and projection were developed, each pertaining to one of the geographic domains. One is the Ensemble-based Reconstructed Forcings (ERF) method that faithfully reproduces the Multi-Model Ensemble (MME) mean but requires only a fraction of the computational cost of the conventional MME approach, which is critical for reducing the high uncertainties in the outlook of future precipitation change over WA. The other newly developed approach tackle the nesting practice, a major source of RCM bias that causes (large-scale) circulation in SA to drift away from that of the driving GCMs. To this end, a new paradigm of regional climate modeling was proposed that includes the influential oceans within the RCM domain to better resolve the large-scale circulation of the SA climate. Results from a fully coupled regional climate model, with and without dynamic vegetation, revealed significant influence of vegetation-climate interactions on the mean and variability of the surface hydroclimate of the two regions of focus. Precipitation, surface temperature, evapotranspiration, and soil moisture were all strongly influenced. In particular, results from both numerical experiments and observational data analysis indicated that tropical oceanic variability plays a dominant role in precipitation variability over SA, including the unprecedented extreme drought of 2016; in addition, greenhouse gas warming was found to significantly contribute to the amplification of the 2016 drought, especially during the pre-monsoon season. Natural vegetation dynamics improves the model performance in capturing the anomalies of surface water storage but has a negligible impact on precipitation anomalies of this extreme drought. Results of this research help advance our understanding and improve our capability to quantify and predict climate variability, change, and extremes over WA and SA.

Statistical and Dynamical Assessment of Land-ocean-atmosphere Interactions Across North Africa

Statistical and Dynamical Assessment of Land-ocean-atmosphere Interactions Across North Africa
Title Statistical and Dynamical Assessment of Land-ocean-atmosphere Interactions Across North Africa PDF eBook
Author Yan Yu
Publisher
Pages 272
Release 2017
Genre
ISBN

Download Statistical and Dynamical Assessment of Land-ocean-atmosphere Interactions Across North Africa Book in PDF, Epub and Kindle

North Africa is highly vulnerable to hydrologic variability and extremes, including impacts of climate change. The current understanding of oceanic versus terrestrial drivers of North African droughts and pluvials is largely model-based, with vast disagreement among models in terms of the simulated oceanic impacts and vegetation feedbacks. Regarding oceanic impacts, the relative importance of the tropical Pacific, tropical Indian, and tropical Atlantic Oceans in regulating the North African rainfall variability, as well as the underlying mechanism, remains debated among different modeling studies. Classic theory of land-atmosphere interactions across the Sahel ecotone, largely based on climate modeling experiments, has promoted positive vegetation-rainfall feedbacks associated with a dominant surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback with its underlying albedo mechanism, nor its relative importance compared with oceanic drivers, has been convincingly demonstrated up to now using observational data. Here, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied in order to identify the observed oceanic and terrestrial drivers of North African climate and quantify their impacts. The reliability of the statistical GEFA method is first evaluated against dynamical experiments within the Community Earth System Model (CESM). In order to reduce the sampling error caused by short data records, the traditional GEFA approach is refined through stepwise GEFA, in which unimportant forcings are dropped through stepwise selection. In order to evaluate GEFA's reliability in capturing oceanic impacts, the atmospheric response to a sea-surface temperature (SST) forcing across the tropical Pacific, tropical Indian, and tropical Atlantic Ocean is estimated independently through ensembles of dynamical experiments and compared with GEFA-based assessments. Furthermore, GEFA's performance in capturing terrestrial impacts is evaluated through ensembles of fully coupled CESM dynamical experiments, with modified leaf area index (LAI) and soil moisture across the Sahel or West African Monsoon (WAM) region. The atmospheric responses to oceanic and terrestrial forcings are generally consistent between the dynamical experiments and statistical GEFA, confirming GEFA's capability of isolating the individual impacts of oceanic and terrestrial forcings on North African climate. Furthermore, with the incorporation of stepwise selection, GEFA can now provide reliable estimates of the oceanic and terrestrial impacts on the North African climate with the typical length of observational datasets, thereby enhancing the method's applicability. After the successful validation of GEFA, the key observed oceanic and terrestrial drivers of North African climate are identified through the application of GEFA to gridded observations, remote sensing products, and reanalyses. According to GEFA, oceanic drivers dominate over terrestrial drivers in terms of their observed impacts on North African climate in most seasons. Terrestrial impacts are comparable to, or more important than, oceanic impacts on rainfall during the post-monsoon across the Sahel and WAM region, and after the short rain across the Horn of Africa (HOA). The key ocean basins that regulate North African rainfall are typically located in the tropics. While the observed impacts of SST variability across the tropical Pacific and tropical Atlantic Oceans on the Sahel rainfall are largely consistent with previous model-based findings, minimal impacts from tropical Indian Ocean variability on Sahel rainfall are identified in observations, in contrast to previous modeling studies. The current observational analysis verifies model-hypothesized positive vegetation-rainfall feedback across the Sahel and HOA, which is confined to the post-monsoon and post-short rains season, respectively. However, the observed positive vegetation feedback to rainfall in the semi-arid Sahel and HOA is largely due to moisture recycling, rather than the classic albedo mechanism. Future projections of Sahel rainfall remain highly uncertain in terms of both sign and magnitude within phases three and five of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). The GEFA-based observational analyses will provide a benchmark for evaluating climate models, which will facilitate effective process-based model weighting for more reliable projections of regional climate, as well as model development.

Influence of the Sea Surface Temperature Decadal Variability on Tropical Precipitation: West African and South American Monsoon

Influence of the Sea Surface Temperature Decadal Variability on Tropical Precipitation: West African and South American Monsoon
Title Influence of the Sea Surface Temperature Decadal Variability on Tropical Precipitation: West African and South American Monsoon PDF eBook
Author Julián Villamayor
Publisher Springer
Pages 238
Release 2019-07-05
Genre Science
ISBN 3030203271

Download Influence of the Sea Surface Temperature Decadal Variability on Tropical Precipitation: West African and South American Monsoon Book in PDF, Epub and Kindle

In this book the Sea Surface Temperature (SST) patterns of decadal-to-multidecadal variability observed and simulated by 17 general circulation models (GCMs) are analyzed. Furthermore, their impact on precipitation in West Africa and South America and the atmospheric mechanisms involved are assessed. Through this analysis, the effect of external forcings on these impacts and the relative contribution of decadal-to-multidecadal variability patterns of SST to precipitation are presented in depth. Finally, a humid period in the West African region of the Sahel during the 19th century, previously little documented, is analyzed using an atmospheric GCM. The monsoons of West Africa and South America have shown changes in the timescales of a few decades. Previous work suggests a relationship with patterns of decadal-to-multidecadal variability of SST, such as global warming and the Atlantic and Pacific variability. However, the dynamics underlying this relationship and its simulation by current GCMs had not been addressed in a consistent manner. This is the main motivation of this book. The results of this book not only represent a great step forward in our understanding of the changes in the precipitation regimes of the studied regions, but they can also be of great help for the improvement of decadal prediction systems and the associated social consequences.

Adaptation to Climate Change and Variability in Rural West Africa

Adaptation to Climate Change and Variability in Rural West Africa
Title Adaptation to Climate Change and Variability in Rural West Africa PDF eBook
Author Joseph A. Yaro
Publisher Springer
Pages 249
Release 2016-04-12
Genre Science
ISBN 3319314998

Download Adaptation to Climate Change and Variability in Rural West Africa Book in PDF, Epub and Kindle

This book presents conceptual and empirical discussions of adaptation to climate change/variability in West Africa. Highlighting different countries’ experiences in adaptation by different socio-economic groups and efforts at building their adaptive capacity, it offers readers a holistic understanding of adaptation on the basis of contextual and generic sources of adaptive capacity. Focusing on adaptation to climate change/variability is critical because the developmental challenges West Africa faces are increasingly intertwined with its climate history. Today, climate change is a major developmental issue for agrarian rural communities with high percentages of the population earning a living directly or indirectly from the natural environment. This makes them highly vulnerable to climate-driven ecological change, in addition to threats in the broader political economic context. It is imperative that rural people adapt to climate change, but their ability to successfully do so may be limited by competing risks and vulnerabilities. As such, elucidating those vulnerabilities and sources of strength with regard to the adaptive capacities needed to support successful adaptation and avoid maladaptation is critical for future policy formulation. Though the empirical discussion is geographically based on West Africa, its applicability in terms of the processes, structures, needs, strategies, and recommendations for policy transcends the region and provides useful lessons for understanding adaptation broadly in the developing world.

Climatology of West Africa

Climatology of West Africa
Title Climatology of West Africa PDF eBook
Author Derek F. Hayward
Publisher Routledge
Pages 502
Release 2019-10-28
Genre Science
ISBN 1000692698

Download Climatology of West Africa Book in PDF, Epub and Kindle

Originally published in 1987, this book brings together information previously buried in specialist sources and makes it available to the student in a non-technical and well-illustrated synthesis. It builds a clear and detailed picture of the climates of West Africa, describing and explaining them and showing how crucial this understanding is to everyday life. The climate’s relevance to water resources, agriculture, health and industry is systematically considered.

The Impact of Climate Change on Drylands

The Impact of Climate Change on Drylands
Title The Impact of Climate Change on Drylands PDF eBook
Author A.J. Dietz
Publisher Springer Science & Business Media
Pages 467
Release 2006-04-11
Genre Science
ISBN 1402021585

Download The Impact of Climate Change on Drylands Book in PDF, Epub and Kindle

Sahelian West Africa has recovered from the disastrous droughts of the 1970s and 1980s. People have learned to adapt to risk and uncertainty in fragile dryland environments. They, as well as global change scientists, are worried about the impact of climate change on these West African drylands. What do the experiences of the last thirty years say about the preparedness for higher temperatures, lower rainfall, and even more variability? Detailed studies on Dryland West Africa as a whole, and on Burkina Faso, Mali and Northern Ghana in particular show an advanced coping behaviour and increased adaptation, but also major differences in vulnerability and coping potential. Climate change preparedness programmes have only just started and require more robust support, and more specific social targeting, for a population which is rapidly growing, even more rapidly urbanising, and further integrating in a globalised economy. This book is the first of its kind with a comprehensive analysis of climate change experiences in West African drylands, with attention for pathways of change and the diversity of adaptation options available. This book is of interest to scientists studying global and climate change, especially dealing with issues of adaptation. Social scientists, economists, geographers and policy makers concerned with West Africa should also read this book.