Ricci Flow and the Sphere Theorem

Ricci Flow and the Sphere Theorem
Title Ricci Flow and the Sphere Theorem PDF eBook
Author Simon Brendle
Publisher American Mathematical Soc.
Pages 186
Release 2010
Genre Mathematics
ISBN 0821849387

Download Ricci Flow and the Sphere Theorem Book in PDF, Epub and Kindle

Deals with the Ricci flow, and the convergence theory for the Ricci flow. This title focuses on preserved curvature conditions, such as positive isotropic curvature. It is suitable for graduate students and researchers.

Hamilton’s Ricci Flow

Hamilton’s Ricci Flow
Title Hamilton’s Ricci Flow PDF eBook
Author Bennett Chow
Publisher American Mathematical Society, Science Press
Pages 648
Release 2023-07-13
Genre Mathematics
ISBN 1470473690

Download Hamilton’s Ricci Flow Book in PDF, Epub and Kindle

Ricci flow is a powerful analytic method for studying the geometry and topology of manifolds. This book is an introduction to Ricci flow for graduate students and mathematicians interested in working in the subject. To this end, the first chapter is a review of the relevant basics of Riemannian geometry. For the benefit of the student, the text includes a number of exercises of varying difficulty. The book also provides brief introductions to some general methods of geometric analysis and other geometric flows. Comparisons are made between the Ricci flow and the linear heat equation, mean curvature flow, and other geometric evolution equations whenever possible. Several topics of Hamilton's program are covered, such as short time existence, Harnack inequalities, Ricci solitons, Perelman's no local collapsing theorem, singularity analysis, and ancient solutions. A major direction in Ricci flow, via Hamilton's and Perelman's works, is the use of Ricci flow as an approach to solving the Poincaré conjecture and Thurston's geometrization conjecture.

The Ricci Flow in Riemannian Geometry

The Ricci Flow in Riemannian Geometry
Title The Ricci Flow in Riemannian Geometry PDF eBook
Author Ben Andrews
Publisher Springer Science & Business Media
Pages 306
Release 2011
Genre Mathematics
ISBN 3642162851

Download The Ricci Flow in Riemannian Geometry Book in PDF, Epub and Kindle

This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.

Ricci Flow and the Poincare Conjecture

Ricci Flow and the Poincare Conjecture
Title Ricci Flow and the Poincare Conjecture PDF eBook
Author John W. Morgan
Publisher American Mathematical Soc.
Pages 586
Release 2007
Genre Mathematics
ISBN 9780821843284

Download Ricci Flow and the Poincare Conjecture Book in PDF, Epub and Kindle

For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. in 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjectu The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. in addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

An Introduction to the Kähler-Ricci Flow

An Introduction to the Kähler-Ricci Flow
Title An Introduction to the Kähler-Ricci Flow PDF eBook
Author Sebastien Boucksom
Publisher Springer
Pages 342
Release 2013-10-02
Genre Mathematics
ISBN 3319008196

Download An Introduction to the Kähler-Ricci Flow Book in PDF, Epub and Kindle

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.

Generalized Ricci Flow

Generalized Ricci Flow
Title Generalized Ricci Flow PDF eBook
Author Mario Garcia Fernandez
Publisher
Pages
Release 2021
Genre Electronic books
ISBN 9781470464110

Download Generalized Ricci Flow Book in PDF, Epub and Kindle

The generalized Ricci flow is a geometric evolution equation which has recently emerged from investigations into mathematical physics, Hitchin's generalized geometry program, and complex geometry. This book gives an introduction to this new area, discusses recent developments, and formulates open questions and conjectures for future study.The text begins with an introduction to fundamental aspects of generalized Riemannian, complex, and Kähler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures as.

Lectures on the Ricci Flow

Lectures on the Ricci Flow
Title Lectures on the Ricci Flow PDF eBook
Author Peter Topping
Publisher Cambridge University Press
Pages 124
Release 2006-10-12
Genre Mathematics
ISBN 0521689473

Download Lectures on the Ricci Flow Book in PDF, Epub and Kindle

An introduction to Ricci flow suitable for graduate students and research mathematicians.