The Problem of Moments
Title | The Problem of Moments PDF eBook |
Author | James Alexander Shohat |
Publisher | American Mathematical Soc. |
Pages | 160 |
Release | 1943-12-31 |
Genre | Mathematics |
ISBN | 0821815016 |
The book was first published in 1943 and then was reprinted several times with corrections. It presents the development of the classical problem of moments for the first 50 years, after its introduction by Stieltjes in the 1890s. In addition to initial developments by Stieltjes, Markov, and Chebyshev, later contributions by Hamburger, Nevanlinna, Hausdorff, Stone, and others are discussed. The book also contains some results on the trigonometric moment problem and a chapter devoted to approximate quadrature formulas.
The Moment Problem
Title | The Moment Problem PDF eBook |
Author | Konrad Schmüdgen |
Publisher | Springer |
Pages | 530 |
Release | 2017-11-09 |
Genre | Mathematics |
ISBN | 3319645463 |
This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidimensional truncated moment problems. The Moment Problem will be particularly useful to graduate students and researchers working on moment problems, functional analysis, complex analysis, harmonic analysis, real algebraic geometry, polynomial optimization, or systems theory. With notes providing useful background information and exercises of varying difficulty illustrating the theory, this book will also serve as a reference on the subject and can be used for self-study.
Moments, Positive Polynomials and Their Applications
Title | Moments, Positive Polynomials and Their Applications PDF eBook |
Author | Jean-Bernard Lasserre |
Publisher | World Scientific |
Pages | 384 |
Release | 2010 |
Genre | Mathematics |
ISBN | 1848164467 |
1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources
The Problem of Moments
Title | The Problem of Moments PDF eBook |
Author | James Alexander Shohat |
Publisher | American Mathematical Society(RI) |
Pages | 168 |
Release | 1950 |
Genre | Mathematics |
ISBN |
Presents the development of the classical problem of moments for the first 50 years, after its introduction by Stieltjes in the 1890s. This book discusses the initial developments by Stieltjes, Markov, and Chebyshev, and later contributions by Hamburger, Nevanlinna, Hausdorff, and Stone.
Analytic Theory of Continued Fractions
Title | Analytic Theory of Continued Fractions PDF eBook |
Author | Hubert Stanley Wall |
Publisher | Courier Dover Publications |
Pages | 449 |
Release | 2018-05-16 |
Genre | Mathematics |
ISBN | 0486830446 |
One of the most authoritative and comprehensive books on the subject of continued fractions, this monograph has been widely used by generations of mathematicians and their students. Dr. Hubert Stanley Wall presents a unified theory correlating certain parts and applications of the subject within a larger analytic structure. Prerequisites include a first course in function theory and knowledge of the elementary properties of linear transformations in the complex plane. Some background in number theory, real analysis, and complex analysis may also prove helpful. The two-part treatment begins with an exploration of convergence theory, addressing continued fractions as products of linear fractional transformations, convergence theorems, and the theory of positive definite continued fractions, as well as other topics. The second part, focusing on function theory, covers the theory of equations, matrix theory of continued fractions, bounded analytic functions, and many additional subjects.
Moments of Impact
Title | Moments of Impact PDF eBook |
Author | Chris Ertel |
Publisher | Simon and Schuster |
Pages | 272 |
Release | 2014-02-11 |
Genre | Business & Economics |
ISBN | 1451697627 |
Two leading experts on designing strategic conversations unveil a simple, creative process that allows teams to tackle their most challenging issues. In our fast-changing world, leaders are increasingly confronted by messy, multifaceted challenges that require collaboration to resolve. But the standard methods for tackling these challenges—meetings packed with data-drenched presentations or brainstorming sessions that circle back to nowhere—just don’t deliver. Great strategic conversations generate breakthrough insights by combining the best ideas of people with different backgrounds and perspectives. In this book, two experts “crack the code” on what it takes to design creative, collaborative problem-solving sessions that soar rather than sink. Drawing on decades of experience as innovation strategists—and supported by cutting-edge social science research, dozens of real-life examples, and interviews with well over 100 thought leaders, executives, and fellow practitioners— they unveil a simple, creative process that leaders and their teams can use to unlock solutions to their most vexing issues. The book also includes a “Starter Kit” full of tools and tips for putting the book’s core principles into practice.
Great Moments in Mathematics Before 1650
Title | Great Moments in Mathematics Before 1650 PDF eBook |
Author | Howard Eves |
Publisher | American Mathematical Soc. |
Pages | 286 |
Release | 1983-12-31 |
Genre | Mathematics |
ISBN | 1614442142 |
Great Moments in Mathematics: Before 1650 is the product of a series of lectures on the history of mathematics given by Howard Eves. He presents here, in chronological order, 20 ``great moments in mathematics before 1650'', which can be appreciated by anyone who enjoys mathematics. These wonderful lectures could be used as the basis of a course on the history of mathematics but can also serve as enrichment to any mathematics course. Included are lectures on the Pythagorean Theorem, Euclid's Elements, Archimedes (on the sphere), Diophantus, Omar Khayyam, and Fibonacci.