The Periodic Unfolding Method

The Periodic Unfolding Method
Title The Periodic Unfolding Method PDF eBook
Author Doina Cioranescu
Publisher Springer
Pages 508
Release 2018-11-03
Genre Mathematics
ISBN 9811330328

Download The Periodic Unfolding Method Book in PDF, Epub and Kindle

This is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field.

Topics on Mathematics for Smart Systems

Topics on Mathematics for Smart Systems
Title Topics on Mathematics for Smart Systems PDF eBook
Author Bernadette Miara
Publisher World Scientific
Pages 283
Release 2007
Genre Mathematics
ISBN 9812703926

Download Topics on Mathematics for Smart Systems Book in PDF, Epub and Kindle

This volume gathers articles presented at a prominent European conference on smart systems and summarizes the activities carried out by a research and training network supported by the European community. The contributions aim to exhibit new research topics in the areas of materials science, advanced mathematical tools, and elements of control and numerical algorithms relevant to the design and optimization of smart systems.

An Introduction to Homogenization

An Introduction to Homogenization
Title An Introduction to Homogenization PDF eBook
Author Doïna Cioranescu
Publisher Oxford University Press on Demand
Pages 262
Release 1999
Genre Mathematics
ISBN 9780198565543

Download An Introduction to Homogenization Book in PDF, Epub and Kindle

Composite materials are widely used in industry: well-known examples of this are the superconducting multi-filamentary composites which are used in the composition of optical fibres. Such materials are complicated to model, as different points in the material will have different properties. The mathematical theory of homogenization is designed to deal with this problem, and hence is used to model the behaviour of these important materials. This book provides a self-contained and authoritative introduction to the subject for graduates and researchers in the field.

Multiscale Problems: Theory, Numerical Approximation And Applications

Multiscale Problems: Theory, Numerical Approximation And Applications
Title Multiscale Problems: Theory, Numerical Approximation And Applications PDF eBook
Author Alain Damlamian
Publisher World Scientific
Pages 314
Release 2011-10-13
Genre Mathematics
ISBN 9814458120

Download Multiscale Problems: Theory, Numerical Approximation And Applications Book in PDF, Epub and Kindle

The focus of this is on the latest developments related to the analysis of problems in which several scales are presented. After a theoretical presentation of the theory of homogenization in the periodic case, the other contributions address a wide range of applications in the fields of elasticity (asymptotic behavior of nonlinear elastic thin structures, modeling of junction of a periodic family of rods with a plate) and fluid mechanics (stationary Navier-Stokes equations in porous media). Other applications concern the modeling of new composites (electromagnetic and piezoelectric materials) and imperfect transmission problems. A detailed approach of numerical finite element methods is also investigated.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory
Title Elements of Applied Bifurcation Theory PDF eBook
Author Yuri Kuznetsov
Publisher Springer Science & Business Media
Pages 648
Release 2013-03-09
Genre Mathematics
ISBN 1475739788

Download Elements of Applied Bifurcation Theory Book in PDF, Epub and Kindle

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Research Directions in Distributed Parameter Systems

Research Directions in Distributed Parameter Systems
Title Research Directions in Distributed Parameter Systems PDF eBook
Author Ralph C. Smith
Publisher SIAM
Pages 283
Release 2003-01-01
Genre Mathematics
ISBN 0898715482

Download Research Directions in Distributed Parameter Systems Book in PDF, Epub and Kindle

Eleven chapters, written by experts in their respective fields, on topics ranging from control of the Navier-Stokes equations to nondestructive evaluation - all of which are modeled by distributed parameter systems.

Multiscale Problems

Multiscale Problems
Title Multiscale Problems PDF eBook
Author Alain Damlamian
Publisher World Scientific
Pages 314
Release 2011
Genre Mathematics
ISBN 9814366889

Download Multiscale Problems Book in PDF, Epub and Kindle

The focus of this is on the latest developments related to the analysis of problems in which several scales are presented. After a theoretical presentation of the theory of homogenization in the periodic case, the other contributions address a wide range of applications in the fields of elasticity (asymptotic behavior of nonlinear elastic thin structures, modeling of junction of a periodic family of rods with a plate) and fluid mechanics (stationary Navier?Stokes equations in porous media). Other applications concern the modeling of new composites (electromagnetic and piezoelectric materials) and imperfect transmission problems. A detailed approach of numerical finite element methods is also investigated.