The Mordell Conjecture
Title | The Mordell Conjecture PDF eBook |
Author | Hideaki Ikoma |
Publisher | Cambridge University Press |
Pages | 180 |
Release | 2022-02-03 |
Genre | Mathematics |
ISBN | 1108998194 |
The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell–Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.
The Mordell Conjecture
Title | The Mordell Conjecture PDF eBook |
Author | Hideaki Ikoma |
Publisher | Cambridge University Press |
Pages | 179 |
Release | 2022-02-03 |
Genre | Mathematics |
ISBN | 1108845959 |
This book provides a self-contained proof of the Mordell conjecture (Faltings's theorem) and a concise introduction to Diophantine geometry.
Lectures on the Mordell-Weil Theorem
Title | Lectures on the Mordell-Weil Theorem PDF eBook |
Author | Jean-P. Serre |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 2013-06-29 |
Genre | Technology & Engineering |
ISBN | 3663106322 |
The book is based on a course given by J.-P. Serre at the Collège de France in 1980 and 1981. Basic techniques in Diophantine geometry are covered, such as heights, the Mordell-Weil theorem, Siegel's and Baker's theorems, Hilbert's irreducibility theorem, and the large sieve. Included are applications to, for example, Mordell's conjecture, the construction of Galois extensions, and the classical class number 1 problem. Comprehensive bibliographical references.
Diophantine Geometry
Title | Diophantine Geometry PDF eBook |
Author | Marc Hindry |
Publisher | Springer Science & Business Media |
Pages | 574 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 1461212103 |
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
The Dynamical Mordell–Lang Conjecture
Title | The Dynamical Mordell–Lang Conjecture PDF eBook |
Author | Jason P. Bell |
Publisher | American Mathematical Soc. |
Pages | 297 |
Release | 2016-04-20 |
Genre | Mathematics |
ISBN | 1470424088 |
The Dynamical Mordell-Lang Conjecture is an analogue of the classical Mordell-Lang conjecture in the context of arithmetic dynamics. It predicts the behavior of the orbit of a point x under the action of an endomorphism f of a quasiprojective complex variety X. More precisely, it claims that for any point x in X and any subvariety V of X, the set of indices n such that the n-th iterate of x under f lies in V is a finite union of arithmetic progressions. In this book the authors present all known results about the Dynamical Mordell-Lang Conjecture, focusing mainly on a p-adic approach which provides a parametrization of the orbit of a point under an endomorphism of a variety.
Model Theory and Algebraic Geometry
Title | Model Theory and Algebraic Geometry PDF eBook |
Author | Elisabeth Bouscaren |
Publisher | Springer |
Pages | 223 |
Release | 2009-03-14 |
Genre | Mathematics |
ISBN | 3540685219 |
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Arithmetic Geometry
Title | Arithmetic Geometry PDF eBook |
Author | G. Cornell |
Publisher | Springer Science & Business Media |
Pages | 359 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461386551 |
This volume is the result of a (mainly) instructional conference on arithmetic geometry, held from July 30 through August 10, 1984 at the University of Connecticut in Storrs. This volume contains expanded versions of almost all the instructional lectures given during the conference. In addition to these expository lectures, this volume contains a translation into English of Falt ings' seminal paper which provided the inspiration for the conference. We thank Professor Faltings for his permission to publish the translation and Edward Shipz who did the translation. We thank all the people who spoke at the Storrs conference, both for helping to make it a successful meeting and enabling us to publish this volume. We would especially like to thank David Rohrlich, who delivered the lectures on height functions (Chapter VI) when the second editor was unavoidably detained. In addition to the editors, Michael Artin and John Tate served on the organizing committee for the conference and much of the success of the conference was due to them-our thanks go to them for their assistance. Finally, the conference was only made possible through generous grants from the Vaughn Foundation and the National Science Foundation.