The Monte Carlo Methods in Atmospheric Optics
Title | The Monte Carlo Methods in Atmospheric Optics PDF eBook |
Author | G.I. Marchuk |
Publisher | Springer |
Pages | 218 |
Release | 2013-04-17 |
Genre | Science |
ISBN | 3540352376 |
This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are connected with the estimation of spatial location and time characteristics of the radiation field. The most universal method for solving those problems is the Monte Carlo method, which is a numerical simulation of the radiative-transfer process. This process can be regarded as a Markov chain of photon collisions in a medium, which result in scattering or absorption. The Monte Carlo tech nique consists in computational simulation of that chain and in constructing statistical estimates of the desired functionals. The authors of this book have contributed to the development of mathemati cal methods of simulation and to the interpretation of optical observations. A series of general method using Monte Carlo techniques has been developed. The present book includes theories and algorithms of simulation. Numerical results corroborate the possibilities and give an impressive prospect of the applications of Monte Carlo methods.
The Monte Carlo Methods in Atmospheric Optics
Title | The Monte Carlo Methods in Atmospheric Optics PDF eBook |
Author | G.I. Marchuk |
Publisher | Springer |
Pages | 210 |
Release | 2014-10-05 |
Genre | Technology & Engineering |
ISBN | 9783662135020 |
This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are connected with the estimation of spatial location and time characteristics of the radiation field. The most universal method for solving those problems is the Monte Carlo method, which is a numerical simulation of the radiative-transfer process. This process can be regarded as a Markov chain of photon collisions in a medium, which result in scattering or absorption. The Monte Carlo tech nique consists in computational simulation of that chain and in constructing statistical estimates of the desired functionals. The authors of this book have contributed to the development of mathemati cal methods of simulation and to the interpretation of optical observations. A series of general method using Monte Carlo techniques has been developed. The present book includes theories and algorithms of simulation. Numerical results corroborate the possibilities and give an impressive prospect of the applications of Monte Carlo methods.
Monte Carlo Methods in Atmospheric Optics
Title | Monte Carlo Methods in Atmospheric Optics PDF eBook |
Author | Guriĭ Ivanovich Marchuck |
Publisher | |
Pages | |
Release | 1980 |
Genre | |
ISBN |
The Monte Carlo Methods in Atmospheric Optics
Title | The Monte Carlo Methods in Atmospheric Optics PDF eBook |
Author | Guriĭ Ivanovich Marchuk |
Publisher | Springer |
Pages | 232 |
Release | 1980 |
Genre | Science |
ISBN |
This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydro-optics. The importance of these problems has grown because of the increasing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmosphere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are connected with the estimation of spatial location and time characteristics of the radiation field. The most universal method for solving those problems is the Monte Carlo method, which is a numerical simulation of the radiative-transfer process. This process can be regarded as a Markov chain of photon collisions in a medium, which result in scattering or absorption. The Monte Carlo technique consists in computational simulation of that chain and in constructing statistical estimates of the desired functionals. The authors of this book have contributed to the development of mathematical methods of simulation and to the interpretation of optical observations. A series of general methods using Monte Carlo techniques has been developed. The present book includes theories and algorithms of simulation. Numerical results corroborate the possibilities and give an impressive prospect of the applications of Monte Carlo methods.
Monte Carlo Methods in Mechanics of Fluid and Gas
Title | Monte Carlo Methods in Mechanics of Fluid and Gas PDF eBook |
Author | Oleg Mikha?lovich Belot?serkovski? |
Publisher | World Scientific |
Pages | 281 |
Release | 2010 |
Genre | Science |
ISBN | 9814282359 |
This book is devoted to analysis of Monte Carlo methods developed in rarefied gas dynamics. Presented is the short history of the development of such methods, described are their main properties, their advantages and deficiencies. It is shown that the contemporary stage in the progress of computational methods cannot be regarded without a complex approach to the preparation of algorithms taking into account all the peculiarities of the problem under consideration, that is, of the physical nature of a process, the mathematical model and the theoretical aspects of computational mathematics and stochastic processes. Thoroughly investigated is the possibility of application of Monte Carlo methods in some kindred areas of science which are non-traditional for the use of statistical modeling (continuous media, turbulence). Considered are the possible directions of development of statistical modeling.
Statistical Physics I
Title | Statistical Physics I PDF eBook |
Author | M. Toda |
Publisher | Springer Science & Business Media |
Pages | 267 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642966985 |
This first volume of Statistical Physics is an introduction to the theories of equilibrium statistical mechanics, whereas the second volume (Springer Ser. Solid-State Sci., Vol. 31) is devoted to non equilibrium theories. Particular emphasis is placed on fundamental principles and basic con cepts and ideas. We start with physical examples of probability and kinetics, and then describe the general principles of statistical mechanics, with appli cations to quantum statistics, imperfect gases, electrolytes, and phase tran sitions, including critical phenomena. Finally, ergodic problems, the me chanical basis of statistical mechanics, are presented. The original text was written in Japanese as a volume of the Iwanami Series in Fundamental Physics, supervised by Professor H. Yukawa. The first edition was published in 1973 and the second in 1978. The English edition has been divided into two volumes at the request of the publisher, and the chapter on ergodic problems, which was at the end of the original book, is included here as Chapter 5. Chapters 1,2,3 and part of Chapter 4 were written by M. Toda, and Chapters 4 and 5 by N. Saito. More extensive references have been added for further reading, and some parts of the final chapters have been revised to bring the text up to date. It is a pleasure to express my gratitude to Professor P. Fulde for his detailed improvements in the manuscript, and to Dr. H. Lotsch of Springer Verlag for his continued cooperation.
Optical Remote Sensing of Ocean Hydrodynamics
Title | Optical Remote Sensing of Ocean Hydrodynamics PDF eBook |
Author | Victor Raizer |
Publisher | CRC Press |
Pages | 359 |
Release | 2019-03-04 |
Genre | Technology & Engineering |
ISBN | 1351119168 |
Optical Remote Sensing is one of the main technologies used in sea surface monitoring. Optical Remote Sensing of Ocean Hydrodynamics investigates and demonstrates capabilities of optical remote sensing technology for enhanced observations and detection of ocean environments. It provides extensive knowledge of physical principles and capabilities of optical observations of the oceans at high spatial resolution, 1-4m, and on the observations of surface wave hydrodynamic processes. It also describes the implementation of spectral-statistical and fusion algorithms for analyses of multispectral optical databases and establishes physics-based criteria for detection of complex wave phenomena and hydrodynamic disturbances including assessment and management of optical databases. This book explains the physical principles of high-resolution optical imagery of the ocean surface, discusses for the first time the capabilities of observing hydrodynamic processes and events, and emphasizes the integration of optical measurements and enhanced data analysis. It also covers both the assessment and the interpretation of dynamic multispectral optical databases and includes applications for advanced studies and nonacoustic detection. This book is an invaluable resource for researches, industry professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn the theory and practice of optical interactions with the ocean.