The Mathematics of Voting and Elections: A Hands-On Approach

The Mathematics of Voting and Elections: A Hands-On Approach
Title The Mathematics of Voting and Elections: A Hands-On Approach PDF eBook
Author Jonathan K. Hodge
Publisher American Mathematical Soc.
Pages 255
Release 2018-10-01
Genre Mathematics
ISBN 1470442876

Download The Mathematics of Voting and Elections: A Hands-On Approach Book in PDF, Epub and Kindle

The Mathematics of Voting and Elections: A Hands-On Approach, Second Edition, is an inquiry-based approach to the mathematics of politics and social choice. The aim of the book is to give readers who might not normally choose to engage with mathematics recreationally the chance to discover some interesting mathematical ideas from within a familiar context, and to see the applicability of mathematics to real-world situations. Through this process, readers should improve their critical thinking and problem solving skills, as well as broaden their views of what mathematics really is and how it can be used in unexpected ways. The book was written specifically for non-mathematical audiences and requires virtually no mathematical prerequisites beyond basic arithmetic. At the same time, the questions included are designed to challenge both mathematical and non-mathematical audiences alike. More than giving the right answers, this book asks the right questions. The book is fun to read, with examples that are not just thought-provoking, but also entertaining. It is written in a style that is casual without being condescending. But the discovery-based approach of the book also forces readers to play an active role in their learning, which should lead to a sense of ownership of the main ideas in the book. And while the book provides answers to some of the important questions in the field of mathematical voting theory, it also leads readers to discover new questions and ways to approach them. In addition to making small improvements in all the chapters, this second edition contains several new chapters. Of particular interest might be Chapter 12 which covers a host of topics related to gerrymandering.

The Mathematics of Elections and Voting

The Mathematics of Elections and Voting
Title The Mathematics of Elections and Voting PDF eBook
Author W.D. Wallis
Publisher Springer
Pages 103
Release 2014-10-08
Genre Mathematics
ISBN 3319098101

Download The Mathematics of Elections and Voting Book in PDF, Epub and Kindle

This title takes an in-depth look at the mathematics in the context of voting and electoral systems, with focus on simple ballots, complex elections, fairness, approval voting, ties, fair and unfair voting, and manipulation techniques. The exposition opens with a sketch of the mathematics behind the various methods used in conducting elections. The reader is lead to a comprehensive picture of the theoretical background of mathematics and elections through an analysis of Condorcet’s Principle and Arrow’s Theorem of conditions in electoral fairness. Further detailed discussion of various related topics include: methods of manipulating the outcome of an election, amendments, and voting on small committees. In recent years, electoral theory has been introduced into lower-level mathematics courses, as a way to illustrate the role of mathematics in our everyday life. Few books have studied voting and elections from a more formal mathematical viewpoint. This text will be useful to those who teach lower level courses or special topics courses and aims to inspire students to understand the more advanced mathematics of the topic. The exercises in this text are ideal for upper undergraduate and early graduate students, as well as those with a keen interest in the mathematics behind voting and elections.

Chaotic Elections!

Chaotic Elections!
Title Chaotic Elections! PDF eBook
Author Donald Saari
Publisher American Mathematical Soc.
Pages 178
Release 2001-04-03
Genre Political Science
ISBN 9780821886168

Download Chaotic Elections! Book in PDF, Epub and Kindle

What does the 2000 U.S. presidential election have in common with selecting a textbook for a calculus course in your department? Was Ralph Nader's influence on the election of George W. Bush greater than the now-famous chads? In Chaotic Elections!, Don Saari analyzes these questions, placing them in the larger context of voting systems in general. His analysis shows that the fundamental problems with the 2000 presidential election are not with the courts, recounts, or defective ballots, but are caused by the very way Americans vote for president. This expository book shows how mathematics can help to identify and characterize a disturbingly large number of paradoxical situations that result from the choice of a voting procedure. Moreover, rather than being able to dismiss them as anomalies, the likelihood of a dubious election result is surprisingly large. These consequences indicate that election outcomes--whether for president, the site of the next Olympics, the chair of a university department, or a prize winner--can differ from what the voters really wanted. They show that by using an inadequate voting procedure, we can, inadvertently, choose badly. To add to the difficulties, it turns out that the mathematical structures of voting admit several strategic opportunities, which are described. Finally, mathematics also helps identify positive results: By using mathematical symmetries, we can identify what the phrase ``what the voters really want'' might mean and obtain a unique voting method that satisfies these conditions. Saari's book should be required reading for anyone who wants to understand not only what happened in the presidential election of 2000, but also how we can avoid similar problems from appearing anytime any group is making a choice using a voting procedure. Reading this book requires little more than high school mathematics and an interest in how the apparently simple situation of voting can lead to surprising paradoxes.

Numbers Rule

Numbers Rule
Title Numbers Rule PDF eBook
Author George Szpiro
Publisher Princeton University Press
Pages 240
Release 2020-11-03
Genre History
ISBN 0691209081

Download Numbers Rule Book in PDF, Epub and Kindle

The author takes the general reader on a tour of the mathematical puzzles and paradoxes inherent in voting systems, such as the Alabama Paradox, in which an increase in the number of seats in the Congress could actually lead to a reduced number of representatives for a state, and the Condorcet Paradox, which demonstrates that the winner of elections featuring more than two candidates does not necessarily reflect majority preferences. Szpiro takes a roughly chronological approach to the topic, traveling from ancient Greece to the present and, in addition to offering explanations of the various mathematical conundrums of elections and voting, also offers biographical details on the mathematicians and other thinkers who thought about them, including Plato, Pliny the Younger, Pierre Simon Laplace, Thomas Jefferson, John von Neumann, and Kenneth Arrow.

Mathematics and Democracy

Mathematics and Democracy
Title Mathematics and Democracy PDF eBook
Author Steven J. Brams
Publisher Princeton University Press
Pages 390
Release 2009-12-02
Genre Science
ISBN 1400835593

Download Mathematics and Democracy Book in PDF, Epub and Kindle

Voters today often desert a preferred candidate for a more viable second choice to avoid wasting their vote. Likewise, parties to a dispute often find themselves unable to agree on a fair division of contested goods. In Mathematics and Democracy, Steven Brams, a leading authority in the use of mathematics to design decision-making processes, shows how social-choice and game theory could make political and social institutions more democratic. Using mathematical analysis, he develops rigorous new procedures that enable voters to better express themselves and that allow disputants to divide goods more fairly. One of the procedures that Brams proposes is "approval voting," which allows voters to vote for as many candidates as they like or consider acceptable. There is no ranking, and the candidate with the most votes wins. The voter no longer has to consider whether a vote for a preferred but less popular candidate might be wasted. In the same vein, Brams puts forward new, more equitable procedures for resolving disputes over divisible and indivisible goods.

Mathematics and Politics

Mathematics and Politics
Title Mathematics and Politics PDF eBook
Author Alan D. Taylor
Publisher Springer Science & Business Media
Pages 378
Release 2009-12-29
Genre Social Science
ISBN 0387776435

Download Mathematics and Politics Book in PDF, Epub and Kindle

As a text for an undergraduate mathematics course for nonmajors, Mathematics and Politics requires no prerequisites in either area while the underlying philosophy involves minimizing algebraic computations and focusing instead on some conceptual aspects of mathematics in the context of important real-world questions in political science. Five major topics are covered including a model of escalation, game theoretic models of international conflict, yes-no voting systems, political power, and social choice. Each topic is discussed in an introductory chapter and revisited in more depth in a later chapter. This new edition has added co-author, Allison Pacelli, and two new chapters on "Fairness" and "More Fairness." The examples and the exercises have been updated and enhanced throughout. Reviews from first edition: This book is well written and has much math of interest. While it is pitched at a non-math audience there is material here that will be new and interesting to the readers... -Sigact News For mathematicians, Taylor's book shows how the social sciences make use of mathematical thinking, in the form of axiomatic systems, and offers a chance to teach this kind of thinking to our students. - The College Mathematics Journal The writing is crisp and the sense of excitement about learning mathematics is seductive. The political conflict examples are well thought out and clear. -Michael C. Munger

The Mathematics of Voting and Apportionment

The Mathematics of Voting and Apportionment
Title The Mathematics of Voting and Apportionment PDF eBook
Author Sherif El-Helaly
Publisher Springer
Pages 275
Release 2019-05-21
Genre Mathematics
ISBN 3030147681

Download The Mathematics of Voting and Apportionment Book in PDF, Epub and Kindle

This textbook contains a rigorous exposition of the mathematical foundations of two of the most important topics in politics and economics: voting and apportionment, at the level of upper undergraduate and beginning graduate students. It stands out among comparable books by providing, in one volume, an extensive and mathematically rigorous treatment of these two topics. The text’s three chapters cover social choice, yes-no voting, and apportionment, respectively, and can be covered in any order, allowing teachers ample flexibility. Each chapter begins with an elementary introduction and several examples to motivate the concepts and to gradually lead to more advanced material. Landmark theorems are presented with detailed and streamlined proofs; those requiring more complex proofs, such as Arrow’s theorems on dictatorship, Gibbard’s theorem on oligarchy, and Gärdenfors’ theorem on manipulation, are broken down into propositions and lemmas in order to make them easier to grasp. Simple and intuitive notations are emphasized over non-standard, overly complicated symbols. Additionally, each chapter ends with exercises that vary from computational to “prove or disprove” types. The Mathematics of Voting and Apportionment will be particularly well-suited for a course in the mathematics of voting and apportionment for upper-level undergraduate and beginning graduate students in economics, political science, or philosophy, or for an elective course for math majors. In addition, this book will be a suitable read for to any curious mathematician looking for an exposition to these unpublicized mathematical applications. No political science prerequisites are needed. Mathematical prerequisites (included in the book) are minimal: elementary concepts in combinatorics, graph theory, order relations, and the harmonic and geometric means. What is needed most is the level of maturity that enables the student to think logically, derive results from axioms and hypotheses, and intuitively grasp logical notions such as “contrapositive” and “counterexample.”