Mathematics of Epidemics on Networks

Mathematics of Epidemics on Networks
Title Mathematics of Epidemics on Networks PDF eBook
Author István Z. Kiss
Publisher Springer
Pages 423
Release 2017-06-08
Genre Mathematics
ISBN 3319508067

Download Mathematics of Epidemics on Networks Book in PDF, Epub and Kindle

This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate students, as well as doctoral students, postdoctoral researchers and academic experts who are engaged in modeling stochastic processes on networks; Providing software that can solve differential equation models or directly simulate epidemics on networks. Replete with numerous diagrams, examples, instructive exercises, and online access to simulation algorithms and readily usable code, this book will appeal to a wide spectrum of readers from different backgrounds and academic levels. Appropriate for students with or without a strong background in mathematics, this textbook can form the basis of an advanced undergraduate or graduate course in both mathematics and other departments alike.

Mathematical Foundations of Computer Networking

Mathematical Foundations of Computer Networking
Title Mathematical Foundations of Computer Networking PDF eBook
Author Srinivasan Keshav
Publisher Pearson Education
Pages 496
Release 2012
Genre Computers
ISBN 0321792106

Download Mathematical Foundations of Computer Networking Book in PDF, Epub and Kindle

Mathematical techniques pervade current research in computer networking, yet are not taught to most computer science undergraduates. This self-contained, highly-accessible book bridges the gap, providing the mathematical grounding students and professionals need to successfully design or evaluate networking systems. The only book of its kind, it brings together information previously scattered amongst multiple texts. It first provides crucial background in basic mathematical tools, and then illuminates the specific theories that underlie computer networking. Coverage includes: * Basic probability * Statistics * Linear Algebra * Optimization * Signals, Systems, and Transforms, including Fourier series and transforms, Laplace transforms, DFT, FFT, and Z transforms * Queuing theory * Game Theory * Control theory * Information theory

The Mathematics of Networks of Linear Systems

The Mathematics of Networks of Linear Systems
Title The Mathematics of Networks of Linear Systems PDF eBook
Author Paul A. Fuhrmann
Publisher Springer
Pages 670
Release 2015-05-26
Genre Mathematics
ISBN 3319166468

Download The Mathematics of Networks of Linear Systems Book in PDF, Epub and Kindle

This book provides the mathematical foundations of networks of linear control systems, developed from an algebraic systems theory perspective. This includes a thorough treatment of questions of controllability, observability, realization theory, as well as feedback control and observer theory. The potential of networks for linear systems in controlling large-scale networks of interconnected dynamical systems could provide insight into a diversity of scientific and technological disciplines. The scope of the book is quite extensive, ranging from introductory material to advanced topics of current research, making it a suitable reference for graduate students and researchers in the field of networks of linear systems. Part I can be used as the basis for a first course in Algebraic System Theory, while Part II serves for a second, advanced, course on linear systems. Finally, Part III, which is largely independent of the previous parts, is ideally suited for advanced research seminars aimed at preparing graduate students for independent research. “Mathematics of Networks of Linear Systems” contains a large number of exercises and examples throughout the text making it suitable for graduate courses in the area.

Graphs, Networks and Algorithms

Graphs, Networks and Algorithms
Title Graphs, Networks and Algorithms PDF eBook
Author Dieter Jungnickel
Publisher Springer Science & Business Media
Pages 597
Release 2013-06-29
Genre Mathematics
ISBN 3662038226

Download Graphs, Networks and Algorithms Book in PDF, Epub and Kindle

Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed

Graph Theoretic Methods in Multiagent Networks

Graph Theoretic Methods in Multiagent Networks
Title Graph Theoretic Methods in Multiagent Networks PDF eBook
Author Mehran Mesbahi
Publisher Princeton University Press
Pages 424
Release 2010-07-01
Genre Mathematics
ISBN 1400835356

Download Graph Theoretic Methods in Multiagent Networks Book in PDF, Epub and Kindle

This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA

Mathematics of Neural Networks

Mathematics of Neural Networks
Title Mathematics of Neural Networks PDF eBook
Author Stephen W. Ellacott
Publisher Springer Science & Business Media
Pages 423
Release 2012-12-06
Genre Computers
ISBN 1461560993

Download Mathematics of Neural Networks Book in PDF, Epub and Kindle

This volume of research papers comprises the proceedings of the first International Conference on Mathematics of Neural Networks and Applications (MANNA), which was held at Lady Margaret Hall, Oxford from July 3rd to 7th, 1995 and attended by 116 people. The meeting was strongly supported and, in addition to a stimulating academic programme, it featured a delightful venue, excellent food and accommo dation, a full social programme and fine weather - all of which made for a very enjoyable week. This was the first meeting with this title and it was run under the auspices of the Universities of Huddersfield and Brighton, with sponsorship from the US Air Force (European Office of Aerospace Research and Development) and the London Math ematical Society. This enabled a very interesting and wide-ranging conference pro gramme to be offered. We sincerely thank all these organisations, USAF-EOARD, LMS, and Universities of Huddersfield and Brighton for their invaluable support. The conference organisers were John Mason (Huddersfield) and Steve Ellacott (Brighton), supported by a programme committee consisting of Nigel Allinson (UMIST), Norman Biggs (London School of Economics), Chris Bishop (Aston), David Lowe (Aston), Patrick Parks (Oxford), John Taylor (King's College, Lon don) and Kevin Warwick (Reading). The local organiser from Huddersfield was Ros Hawkins, who took responsibility for much of the administration with great efficiency and energy. The Lady Margaret Hall organisation was led by their bursar, Jeanette Griffiths, who ensured that the week was very smoothly run.

Discrete Mathematics of Neural Networks

Discrete Mathematics of Neural Networks
Title Discrete Mathematics of Neural Networks PDF eBook
Author Martin Anthony
Publisher SIAM
Pages 137
Release 2001-01-01
Genre Computers
ISBN 089871480X

Download Discrete Mathematics of Neural Networks Book in PDF, Epub and Kindle

This concise, readable book provides a sampling of the very large, active, and expanding field of artificial neural network theory. It considers select areas of discrete mathematics linking combinatorics and the theory of the simplest types of artificial neural networks. Neural networks have emerged as a key technology in many fields of application, and an understanding of the theories concerning what such systems can and cannot do is essential. Some classical results are presented with accessible proofs, together with some more recent perspectives, such as those obtained by considering decision lists. In addition, probabilistic models of neural network learning are discussed. Graph theory, some partially ordered set theory, computational complexity, and discrete probability are among the mathematical topics involved. Pointers to further reading and an extensive bibliography make this book a good starting point for research in discrete mathematics and neural networks.