The Heavy Ion Fusion Program in the USA.

The Heavy Ion Fusion Program in the USA.
Title The Heavy Ion Fusion Program in the USA. PDF eBook
Author
Publisher
Pages 5
Release 2000
Genre
ISBN

Download The Heavy Ion Fusion Program in the USA. Book in PDF, Epub and Kindle

The U.S. Department of Energy has established a new, larger inertial fusion energy program. To manage program growth, we have developed a new inertial fusion energy research and we have established a Virtual National Laboratory for Heavy Ion Fusion. There has been significant technical progress. Improvements in target design have reduced the predicted energy requirements by approximately a factor of two. There have also been important experiments on chamber dynamics and other inertial fusion technologies. The accelerator program has completed a number of small-scale experiments. Experiments with driver-scale beams are being designed -- including experiments with driver-scale ion sources and injectors. Finally we are developing the technologies needed to build a major research facility known as the Integrated Research Experiment (IRE).

The Heavy Ion Fusion Program in the U.S.A.

The Heavy Ion Fusion Program in the U.S.A.
Title The Heavy Ion Fusion Program in the U.S.A. PDF eBook
Author
Publisher
Pages 13
Release 2000
Genre
ISBN

Download The Heavy Ion Fusion Program in the U.S.A. Book in PDF, Epub and Kindle

Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to>100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade.

US Program in Heavy-ion Fusion

US Program in Heavy-ion Fusion
Title US Program in Heavy-ion Fusion PDF eBook
Author
Publisher
Pages
Release 1982
Genre
ISBN

Download US Program in Heavy-ion Fusion Book in PDF, Epub and Kindle

A national plan for heavy ion fusion research is outlined. The transfer of the heavy ion fusion program from the Defense Programs to the Office of Energy Research is discussed. (MOW).

Overview of Heavy Ion Fusion Program in U.S.A.

Overview of Heavy Ion Fusion Program in U.S.A.
Title Overview of Heavy Ion Fusion Program in U.S.A. PDF eBook
Author
Publisher
Pages
Release 1978
Genre
ISBN

Download Overview of Heavy Ion Fusion Program in U.S.A. Book in PDF, Epub and Kindle

The current national program comprises the following major activities: (1) preliminary design, systems studies, and cost estimates for a reference 'pilot-plant' driver [Beam energy = 1 MJ; Beam power on target = 100 TW; specific energy deposition ≥ 20 MJ/gm]; (2) consequent upon this reference design, definition of an intermediate Heavy Ion Demonstration Experiment (HIDE) to test the accelerator technology and to begin to probe the scaling behavior of the heavy-ion target behavior, current thinking suggests that the beam energy should be about 100 kJ, or roughly one-tenth that of the reference design, in present DOE plans, HIDE is assumed to be operating in FY1985 or FY1986. (3) Design of targets optimized for heavy-ion driver; relaxation of the high beam-power requirements would allow accelerator designs to produce lower kinetic energy for the ion and permit a longer final pulse duration, thus easing a difficult demand on present-day accelerator behavior; (4) development of a clear understanding of the design implications of the beam space-charge limits, both longitudinal and transverse, several of the accelerator system design parameters, e.g apertures, number of final beams, size of final focusing magnets, are sensitive to assumptions about the six-dimensional phase-space density and volume of the beam. Creatoni and preservation of a suitable density is intimately related to various of the space-charge limits which in turn have an impact on the cost of the driver; (5) demonstration of suitable heavy-ion sources and acceleration of the beams to modest energies as a bench-test of a pre-accelerator; and (6) definition of the final focusing procedures including the final beam propagation and stability in a reactor vessel environment.

Overview of U.S. Heavy Ion Fusion Progress and Plans

Overview of U.S. Heavy Ion Fusion Progress and Plans
Title Overview of U.S. Heavy Ion Fusion Progress and Plans PDF eBook
Author
Publisher
Pages
Release 2004
Genre
ISBN

Download Overview of U.S. Heavy Ion Fusion Progress and Plans Book in PDF, Epub and Kindle

Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

Overview of US Heavy-ion Fusion Progress and Plans

Overview of US Heavy-ion Fusion Progress and Plans
Title Overview of US Heavy-ion Fusion Progress and Plans PDF eBook
Author
Publisher
Pages
Release 2004
Genre
ISBN

Download Overview of US Heavy-ion Fusion Progress and Plans Book in PDF, Epub and Kindle

Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, transport, final focusing, chambers and targets for inertial fusion energy (IFE) driven by induction linac accelerators seek to provide the scientific and technical basis for the Integrated Beam Experiment (IBX), an integrated source-to-target physics experiment recently included in the list of future facilities planned by the U.S. Department of Energy. To optimize the design of IBX and future inertial fusion energy drivers, current HIF-VNL research is addressing several key issues (representative, not inclusive): gas and electron cloud effects which can exacerbate beam loss at high beam perveance and magnet aperture fill factors; ballistic neutralized and assisted-pinch focusing of neutralized heavy ion beams; limits on longitudinal compression of both neutralized and un-neutralized heavy ion bunches; and tailoring heavy ion beams for uniform target energy deposition for high energy density physics (HEDP) studies.

Overview of US Heavy Ion Fusion Research

Overview of US Heavy Ion Fusion Research
Title Overview of US Heavy Ion Fusion Research PDF eBook
Author R. C. Davidson
Publisher
Pages
Release 2004
Genre
ISBN

Download Overview of US Heavy Ion Fusion Research Book in PDF, Epub and Kindle

Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.