The Geometry of Cubic Hypersurfaces

The Geometry of Cubic Hypersurfaces
Title The Geometry of Cubic Hypersurfaces PDF eBook
Author Daniel Huybrechts
Publisher Cambridge University Press
Pages 462
Release 2023-06-30
Genre Mathematics
ISBN 1009279998

Download The Geometry of Cubic Hypersurfaces Book in PDF, Epub and Kindle

Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry.

Algebraic Geometry and Number Theory

Algebraic Geometry and Number Theory
Title Algebraic Geometry and Number Theory PDF eBook
Author Hussein Mourtada
Publisher Birkhäuser
Pages 232
Release 2017-05-16
Genre Mathematics
ISBN 9783319477787

Download Algebraic Geometry and Number Theory Book in PDF, Epub and Kindle

This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

Birational Geometry of Hypersurfaces

Birational Geometry of Hypersurfaces
Title Birational Geometry of Hypersurfaces PDF eBook
Author Andreas Hochenegger
Publisher Springer Nature
Pages 301
Release 2019-10-08
Genre Mathematics
ISBN 3030186385

Download Birational Geometry of Hypersurfaces Book in PDF, Epub and Kindle

Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results. The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side. Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.

Geometry Over Nonclosed Fields

Geometry Over Nonclosed Fields
Title Geometry Over Nonclosed Fields PDF eBook
Author Fedor Bogomolov
Publisher Springer
Pages 267
Release 2017-02-09
Genre Mathematics
ISBN 3319497634

Download Geometry Over Nonclosed Fields Book in PDF, Epub and Kindle

Based on the Simons Symposia held in 2015, the proceedings in this volume focus on rational curves on higher-dimensional algebraic varieties and applications of the theory of curves to arithmetic problems. There has been significant progress in this field with major new results, which have given new impetus to the study of rational curves and spaces of rational curves on K3 surfaces and their higher-dimensional generalizations. One main recent insight the book covers is the idea that the geometry of rational curves is tightly coupled to properties of derived categories of sheaves on K3 surfaces. The implementation of this idea led to proofs of long-standing conjectures concerning birational properties of holomorphic symplectic varieties, which in turn should yield new theorems in arithmetic. This proceedings volume covers these new insights in detail.

Classical Algebraic Geometry

Classical Algebraic Geometry
Title Classical Algebraic Geometry PDF eBook
Author Igor V. Dolgachev
Publisher Cambridge University Press
Pages 653
Release 2012-08-16
Genre Mathematics
ISBN 1139560786

Download Classical Algebraic Geometry Book in PDF, Epub and Kindle

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.

Algebraic Geometry

Algebraic Geometry
Title Algebraic Geometry PDF eBook
Author Joe Harris
Publisher Springer Science & Business Media
Pages 344
Release 2013-11-11
Genre Mathematics
ISBN 1475721897

Download Algebraic Geometry Book in PDF, Epub and Kindle

"This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS

Cubic Forms and the Circle Method

Cubic Forms and the Circle Method
Title Cubic Forms and the Circle Method PDF eBook
Author Tim Browning
Publisher Springer Nature
Pages 175
Release 2021-11-19
Genre Mathematics
ISBN 3030868729

Download Cubic Forms and the Circle Method Book in PDF, Epub and Kindle

The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.