The General Topology of Dynamical Systems

The General Topology of Dynamical Systems
Title The General Topology of Dynamical Systems PDF eBook
Author Ethan Akin
Publisher American Mathematical Soc.
Pages 273
Release 1993
Genre Mathematics
ISBN 0821849328

Download The General Topology of Dynamical Systems Book in PDF, Epub and Kindle

Recent work in dynamical systems theory has both highlighted certain topics in the pre-existing subject of topological dynamics (such as the construction of Lyapunov functions and various notions of stability) and also generated new concepts and results. This book collects these results, both old and new, and organises them into a natural foundation for all aspects of dynamical systems theory.

Topological Dynamical Systems

Topological Dynamical Systems
Title Topological Dynamical Systems PDF eBook
Author Jan Vries
Publisher Walter de Gruyter
Pages 516
Release 2014-01-31
Genre Mathematics
ISBN 3110342405

Download Topological Dynamical Systems Book in PDF, Epub and Kindle

There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.

Topological Theory of Dynamical Systems

Topological Theory of Dynamical Systems
Title Topological Theory of Dynamical Systems PDF eBook
Author N. Aoki
Publisher Elsevier
Pages 425
Release 1994-06-03
Genre Mathematics
ISBN 008088721X

Download Topological Theory of Dynamical Systems Book in PDF, Epub and Kindle

This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments.This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book.Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.

Geometric Theory of Dynamical Systems

Geometric Theory of Dynamical Systems
Title Geometric Theory of Dynamical Systems PDF eBook
Author J. Jr. Palis
Publisher Springer Science & Business Media
Pages 208
Release 2012-12-06
Genre Mathematics
ISBN 1461257034

Download Geometric Theory of Dynamical Systems Book in PDF, Epub and Kindle

... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.

Differential Geometry and Topology

Differential Geometry and Topology
Title Differential Geometry and Topology PDF eBook
Author Keith Burns
Publisher CRC Press
Pages 408
Release 2005-05-27
Genre Mathematics
ISBN 9781584882534

Download Differential Geometry and Topology Book in PDF, Epub and Kindle

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.

Topology I

Topology I
Title Topology I PDF eBook
Author S.P. Novikov
Publisher Springer Science & Business Media
Pages 326
Release 2013-06-29
Genre Mathematics
ISBN 3662105799

Download Topology I Book in PDF, Epub and Kindle

This up-to-date survey of the whole field of topology is the flagship of the topology subseries of the Encyclopaedia. The book gives an overview of various subfields, beginning with the elements and proceeding right up to the present frontiers of research.

Recent Progress in General Topology III

Recent Progress in General Topology III
Title Recent Progress in General Topology III PDF eBook
Author K.P. Hart
Publisher Springer Science & Business Media
Pages 898
Release 2013-12-11
Genre Mathematics
ISBN 946239024X

Download Recent Progress in General Topology III Book in PDF, Epub and Kindle

The book presents surveys describing recent developments in most of the primary subfields of General Topology, and its applications to Algebra and Analysis during the last decade, following the previous editions (North Holland, 1992 and 2002). The book was prepared in connection with the Prague Topological Symposium, held in 2011. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs from that chosen in 2002. The following areas experienced significant developments: Fractals, Coarse Geometry/Topology, Dimension Theory, Set Theoretic Topology and Dynamical Systems.