The Early Mathematics of Leonhard Euler
Title | The Early Mathematics of Leonhard Euler PDF eBook |
Author | C. Edward Sandifer |
Publisher | American Mathematical Soc. |
Pages | 391 |
Release | 2020-07-14 |
Genre | Education |
ISBN | 1470451808 |
The Early Mathematics of Leonhard Euler gives an article-by-article description of Leonhard Euler's early mathematical works; the 50 or so mathematical articles he wrote before he left St. Petersburg in 1741 to join the Academy of Frederick the Great in Berlin. These early pieces contain some of Euler's greatest work, the Konigsberg bridge problem, his solution to the Basel problem, and his first proof of the Euler-Fermat theorem. It also presents important results that we seldom realize are due to Euler; that mixed partial derivatives are (usually) equal, our f(x) f(x) notation, and the integrating factor in differential equations. The books shows how contributions in diverse fields are related, how number theory relates to series, which, in turn, relate to elliptic integrals and then to differential equations. There are dozens of such strands in this beautiful web of mathematics. At the same time, we see Euler grow in power and sophistication, from a young student when at 18 he published his first work on differential equations (a paper with a serious flaw) to the most celebrated mathematician and scientist of his time. It is a portrait of the world's most exciting mathematics between 1725 and 1741, rich in technical detail, woven with connections within Euler's work and with the work of other mathematicians in other times and places, laced with historical context.
The Early Mathematics of Leonhard Euler
Title | The Early Mathematics of Leonhard Euler PDF eBook |
Author | C. Edward Sandifer |
Publisher | MAA |
Pages | 426 |
Release | 2007-03-15 |
Genre | Biography & Autobiography |
ISBN | 9780883855591 |
Describes Euler's early mathematical works - the 50 mathematical articles he wrote before he left St. Petersburg in 1741 to join the Academy of Frederick the Great in Berlin. These works contain some of Euler's greatest mathematics: the Konigsburg bridge problem, his solution to the Basel problem, his first proof of the Euler-Fermat theorem. Also presented are important results that we seldom realize are due to Euler: that mixed partial derivatives are equal, our f(x) notation, and the integrating factor in differential equations. The book is a portrait of the world's most exciting mathematics between 1725 and 1741, rich in technical detail, woven with connections within Euler's work and with the work of other mathematicians in other times and places, laced with historical context.
The Early Mathematics of Leonhard Euler
Title | The Early Mathematics of Leonhard Euler PDF eBook |
Author | Charles Edward Sandifer |
Publisher | |
Pages | 415 |
Release | |
Genre | Electronic books |
ISBN | 9781470451813 |
The Early Mathematics of Leonhard Euler gives an article-by-article description of Leonhard Euler's early mathematical works; the 50 or so mathematical articles he wrote before he left St. Petersburg in 1741 to join the Academy of Frederick the Great in Berlin. These early pieces contain some of Euler's greatest work, the Konigsberg bridge problem, his solution to the Basel problem, and his first proof of the Euler-Fermat theorem. It also presents important results that we seldom realize are due to Euler; that mixed partial derivatives are (usually) equal, our f(x) notation, and the integratin.
Leonhard Euler
Title | Leonhard Euler PDF eBook |
Author | Robert E. Bradley |
Publisher | Elsevier |
Pages | 543 |
Release | 2007-03-20 |
Genre | Mathematics |
ISBN | 0080471293 |
The year 2007 marks the 300th anniversary of the birth of one of the Enlightenment's most important mathematicians and scientists, Leonhard Euler. This volume is a collection of 24 essays by some of the world's best Eulerian scholars from seven different countries about Euler, his life and his work. Some of the essays are historical, including much previously unknown information about Euler's life, his activities in the St. Petersburg Academy, the influence of the Russian Princess Dashkova, and Euler's philosophy. Others describe his influence on the subsequent growth of European mathematics and physics in the 19th century. Still others give technical details of Euler's innovations in probability, number theory, geometry, analysis, astronomy, mechanics and other fields of mathematics and science.- Over 20 essays by some of the best historians of mathematics and science, including Ronald Calinger, Peter Hoffmann, Curtis Wilson, Kim Plofker, Victor Katz, Ruediger Thiele, David Richeson, Robin Wilson, Ivor Grattan-Guinness and Karin Reich- New details of Euler's life in two essays, one by Ronald Calinger and one he co-authored with Elena Polyakhova- New information on Euler's work in differential geometry, series, mechanics, and other important topics including his influence in the early 19th century
How Euler Did Even More
Title | How Euler Did Even More PDF eBook |
Author | C. Edward Sandifer |
Publisher | The Mathematical Association of America |
Pages | 254 |
Release | 2014-11-19 |
Genre | Mathematics |
ISBN | 0883855844 |
Sandifer has been studying Euler for decades and is one of the world’s leading experts on his work. This volume is the second collection of Sandifer’s “How Euler Did It” columns. Each is a jewel of historical and mathematical exposition. The sum total of years of work and study of the most prolific mathematician of history, this volume will leave you marveling at Euler’s clever inventiveness and Sandifer’s wonderful ability to explicate and put it all in context.
Leonhard Euler
Title | Leonhard Euler PDF eBook |
Author | Ronald Calinger |
Publisher | Princeton University Press |
Pages | 689 |
Release | 2019-12-03 |
Genre | Biography & Autobiography |
ISBN | 0691196400 |
"This is the first full-scale biography of Leonhard Euler (1707-83), one of the greatest mathematicians and theoretical physicists of all time. In this comprehensive and authoritative account, Ronald Calinger connects the story of Euler's eventful life to the astonishing achievements that place him in the company of Archimedes, Newton, and Gauss. Drawing chiefly on Euler's massive published works and correspondence, which fill more than eighty volumes so far, this biography sets Euler's work in its multilayered context--personal, intellectual, institutional, political, cultural, religious, and social. It is a story of nearly incessant accomplishment, from Euler's fundamental contributions to almost every area of pure and applied mathematics--especially calculus, number theory, notation, optics, and celestial, rational, and fluid mechanics--to his advancements in shipbuilding, telescopes, ballistics, cartography, chronology, and music theory. The narrative takes the reader from Euler's childhood and education in Basel through his first period in St. Petersburg, 1727-41, where he gained a European reputation by solving the Basel problem and systematically developing analytical mechanics. Invited to Berlin by Frederick II, Euler published his famous Introductio in analysin infinitorum, devised continuum mechanics, and proposed a pulse theory of light. Returning to St. Petersburg in 1766, he created the analytical calculus of variations, developed the most precise lunar theory of the time that supported Newton's dynamics, and published the best-selling Letters to a German Princess--all despite eye problems that ended in near-total blindness. In telling the remarkable story of Euler and how his achievements brought pan-European distinction to the Petersburg and Berlin academies of sciences, the book also demonstrates with new depth and detail the central role of mathematics in the Enlightenment."--Publisher's description.
Euler
Title | Euler PDF eBook |
Author | William Dunham |
Publisher | American Mathematical Society |
Pages | 185 |
Release | 2022-01-13 |
Genre | Mathematics |
ISBN | 147046618X |
Leonhard Euler was one of the most prolific mathematicians that have ever lived. This book examines the huge scope of mathematical areas explored and developed by Euler, which includes number theory, combinatorics, geometry, complex variables and many more. The information known to Euler over 300 years ago is discussed, and many of his advances are reconstructed. Readers will be left in no doubt about the brilliance and pervasive influence of Euler's work.