Rotating Fluids in Engineering and Science
Title | Rotating Fluids in Engineering and Science PDF eBook |
Author | J P Vanyo |
Publisher | Elsevier |
Pages | 440 |
Release | 2015-09-02 |
Genre | Science |
ISBN | 1483292339 |
Approx.440 pages
The Theory of Rotating Fluids
Title | The Theory of Rotating Fluids PDF eBook |
Author | Greenspan |
Publisher | CUP Archive |
Pages | 388 |
Release | 1968-07 |
Genre | Mathematics |
ISBN | 9780521051477 |
Theory and Modeling of Rotating Fluids
Title | Theory and Modeling of Rotating Fluids PDF eBook |
Author | Keke Zhang |
Publisher | Cambridge University Press |
Pages | 541 |
Release | 2017-05-23 |
Genre | Science |
ISBN | 1108293468 |
A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research. Sufficient mathematical and numerical detail is provided in a variety of geometries such that the analysis and results can be readily reproduced, and many numerical tables are included to enable readers to compare or benchmark their own calculations. Traditionally, there are two disjointed topics in rotating fluids: convective fluid motion driven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession-driven flow, described by Greenspan (1968). Now, for the first time in book form, a unified theory is presented for three topics - thermal convection, inertial waves and precession-driven flow - to demonstrate that these seemingly complicated, and previously disconnected, problems become mathematically simple in the framework of an asymptotic approach that incorporates the essential characteristics of rotating fluids.
The Dynamics of Rotating Fluids
Title | The Dynamics of Rotating Fluids PDF eBook |
Author | P A Davidson |
Publisher | Oxford University Press |
Pages | 529 |
Release | 2024-06-28 |
Genre | Mathematics |
ISBN | 0198886306 |
This textbook on rotating fluid dynamics combines a pedagogical development of theoretical ideas with a description and analysis of many of the fascinating examples of rotating flows found in nature. The book is self-contained, starting in Part I with introductory chapters on fluid dynamics and waves. The largest section of the book is Part II, where a broad theoretical framework is developed for rotating flows, including Ekman layers, inertial waves, Taylor columns, Rossby waves, precession, instabilities, rotating convection, vortex breakdown, and rotating turbulence. The book ends, in Part III, with an analysis of some naturally occurring rotating flows, including tornadoes and dust devils, tidal vortices, tropical cyclones, convection in planetary cores, zonal winds in planetary atmospheres, and astrophysical accretion discs. Davidson presents a unique combination of a deep but broad theoretical framework with a detailed discussion of many naturally occurring flows. Moreover, the book places great emphasis on the pedagogical development of theoretical ideas and the physical insight that brings.
Rotating Flow
Title | Rotating Flow PDF eBook |
Author | Peter Childs |
Publisher | Elsevier |
Pages | 415 |
Release | 2010-10-29 |
Genre | Science |
ISBN | 0123820995 |
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows.Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries.Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows—which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding.Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications. - A detailed yet accessible introduction to rotating flows, illustrating the differences between flows where rotation is significant and highlighting the non-intuitive nature of rotating flow fields - Written by world-leading authority on rotating flow, Peter Childs, making this a unique and authoritative work - Covers the essential theory behind engineering applications such as rotating discs, cylinders, and cavities, with natural phenomena such as atmospheric and oceanic flows used to explain underlying principles - Provides a rigorous, fully worked mathematical account of rotating flows whilst also including numerous practical examples in daily life to highlight the relevance and prevalence of different flow types - Concise summaries of the results of important research and lists of references included to direct readers to significant further resources
Physical Fluid Dynamics
Title | Physical Fluid Dynamics PDF eBook |
Author | D. J. Tritton |
Publisher | Springer Science & Business Media |
Pages | 378 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9400999925 |
To classify a book as 'experimental' rather than 'theoretical' or as 'pure' rather than 'applied' is liable to imply umeal distinctions. Nevertheless, some Classification is necessary to teIl the potential reader whether the book is for him. In this spirit, this book may be said to treat fluid dynamies as a branch of physics, rather than as a branch of applied mathematics or of engineering. I have often heard expressions of the need for such a book, and certainly I have feIt it in my own teaching. I have written it primariIy for students of physics and of physics-based applied science, aIthough I hope others may find it useful. The book differs from existing 'fundamental' books in placing much greater emphasis on what we know through laboratory experiments and their physical interpretation and less on the mathe matieal formalism. It differs from existing 'applied' books in that the choice of topics has been made for the insight they give into the behaviour of fluids in motion rather than for their practical importance. There are differences also from many existing books on fluid dynamics in the branches treated, reflecting to some extent shifts of interest in reeent years. In particular, geophysical and astrophysical applications have prompted important fundamental developments in topics such as conveetion, stratified flow, and the dynamics of rotating fluids. These developments have hitherto been reflected in the contents of textbooks only to a limited extent.
Introduction to Mathematical Fluid Dynamics
Title | Introduction to Mathematical Fluid Dynamics PDF eBook |
Author | Richard E. Meyer |
Publisher | Courier Corporation |
Pages | 194 |
Release | 2012-03-08 |
Genre | Science |
ISBN | 0486138941 |
Geared toward advanced undergraduate and graduate students in applied mathematics, engineering, and the physical sciences, this introductory text covers kinematics, momentum principle, Newtonian fluid, compressibility, and other subjects. 1971 edition.