The Data Industry

The Data Industry
Title The Data Industry PDF eBook
Author Chunlei Tang
Publisher John Wiley & Sons
Pages 217
Release 2016-06-13
Genre Mathematics
ISBN 111913840X

Download The Data Industry Book in PDF, Epub and Kindle

Provides an introduction of the data industry to the field of economics This book bridges the gap between economics and data science to help data scientists understand the economics of big data, and enable economists to analyze the data industry. It begins by explaining data resources and introduces the data asset. This book defines a data industry chain, enumerates data enterprises’ business models versus operating models, and proposes a mode of industrial development for the data industry. The author describes five types of enterprise agglomerations, and multiple industrial cluster effects. A discussion on the establishment and development of data industry related laws and regulations is provided. In addition, this book discusses several scenarios on how to convert data driving forces into productivity that can then serve society. This book is designed to serve as a reference and training guide for ata scientists, data-oriented managers and executives, entrepreneurs, scholars, and government employees. Defines and develops the concept of a “Data Industry,” and explains the economics of data to data scientists and statisticians Includes numerous case studies and examples from a variety of industries and disciplines Serves as a useful guide for practitioners and entrepreneurs in the business of data technology The Data Industry: The Business and Economics of Information and Big Data is a resource for practitioners in the data science industry, government, and students in economics, business, and statistics. CHUNLEI TANG, Ph.D., is a research fellow at Harvard University. She is the co-founder of Fudan’s Institute for Data Industry and proposed the concept of the “data industry”. She received a Ph.D. in Computer and Software Theory in 2012 and a Master of Software Engineering in 2006 from Fudan University, Shanghai, China.

Machine Learning and Data Science in the Power Generation Industry

Machine Learning and Data Science in the Power Generation Industry
Title Machine Learning and Data Science in the Power Generation Industry PDF eBook
Author Patrick Bangert
Publisher Elsevier
Pages 276
Release 2021-01-14
Genre Technology & Engineering
ISBN 0128226005

Download Machine Learning and Data Science in the Power Generation Industry Book in PDF, Epub and Kindle

Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study–driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting. - Provides best practices on how to design and set up ML projects in power systems, including all nontechnological aspects necessary to be successful - Explores implementation pathways, explaining key ML algorithms and approaches as well as the choices that must be made, how to make them, what outcomes may be expected, and how the data must be prepared for them - Determines the specific data needs for the collection, processing, and operationalization of data within machine learning algorithms for power systems - Accompanied by numerous supporting real-world case studies, providing practical evidence of both best practices and potential pitfalls

Big Data Applications in Industry 4.0

Big Data Applications in Industry 4.0
Title Big Data Applications in Industry 4.0 PDF eBook
Author P. Kaliraj
Publisher CRC Press
Pages 446
Release 2022-02-10
Genre Computers
ISBN 1000537668

Download Big Data Applications in Industry 4.0 Book in PDF, Epub and Kindle

Industry 4.0 is the latest technological innovation in manufacturing with the goal to increase productivity in a flexible and efficient manner. Changing the way in which manufacturers operate, this revolutionary transformation is powered by various technology advances including Big Data analytics, Internet of Things (IoT), Artificial Intelligence (AI), and cloud computing. Big Data analytics has been identified as one of the significant components of Industry 4.0, as it provides valuable insights for smart factory management. Big Data and Industry 4.0 have the potential to reduce resource consumption and optimize processes, thereby playing a key role in achieving sustainable development. Big Data Applications in Industry 4.0 covers the recent advancements that have emerged in the field of Big Data and its applications. The book introduces the concepts and advanced tools and technologies for representing and processing Big Data. It also covers applications of Big Data in such domains as financial services, education, healthcare, biomedical research, logistics, and warehouse management. Researchers, students, scientists, engineers, and statisticians can turn to this book to learn about concepts, technologies, and applications that solve real-world problems. Features An introduction to data science and the types of data analytics methods accessible today An overview of data integration concepts, methodologies, and solutions A general framework of forecasting principles and applications, as well as basic forecasting models including naïve, moving average, and exponential smoothing models A detailed roadmap of the Big Data evolution and its related technological transformation in computing, along with a brief description of related terminologies The application of Industry 4.0 and Big Data in the field of education The features, prospects, and significant role of Big Data in the banking industry, as well as various use cases of Big Data in banking, finance services, and insurance Implementing a Data Lake (DL) in the cloud and the significance of a data lake in decision making

The Data Gaze

The Data Gaze
Title The Data Gaze PDF eBook
Author David Beer
Publisher SAGE
Pages 269
Release 2018-10-29
Genre Social Science
ISBN 1526463199

Download The Data Gaze Book in PDF, Epub and Kindle

A significant new way of understanding contemporary capitalism is to understand the intensification and spread of data analytics. This text is about the powerful promises and visions that have led to the expansion of data analytics and data-led forms of social ordering. It is centrally concerned with examining the types of knowledge associated with data analytics and shows that how these analytics are envisioned is central to the emergence and prominence of data at various scales of social life. This text aims to understand the powerful role of the data analytics industry and how this industry facilitates the spread and intensification of data-led processes. As such, The Data Gaze is concerned with understanding how data-led, data-driven and data-reliant forms of capitalism pervade organisational and everyday life. Using a clear theoretical approach derived from Foucault and critical data studies, the text develops the concept of the data gaze and shows how powerful and persuasive it is. It’s an essential and subversive guide to data analytics and data capitalism.

IoT-Based Data Analytics for the Healthcare Industry

IoT-Based Data Analytics for the Healthcare Industry
Title IoT-Based Data Analytics for the Healthcare Industry PDF eBook
Author Sanjay Kumar Singh
Publisher Academic Press
Pages 342
Release 2020-11-07
Genre Technology & Engineering
ISBN 0128214767

Download IoT-Based Data Analytics for the Healthcare Industry Book in PDF, Epub and Kindle

IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. - Provides state-of-art methods and current trends in data analytics for the healthcare industry - Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques - Discusses several potential AI techniques developed using IoT for the healthcare industry - Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages

Data Analysis for Business, Economics, and Policy

Data Analysis for Business, Economics, and Policy
Title Data Analysis for Business, Economics, and Policy PDF eBook
Author Gábor Békés
Publisher Cambridge University Press
Pages 741
Release 2021-05-06
Genre Business & Economics
ISBN 1108483011

Download Data Analysis for Business, Economics, and Policy Book in PDF, Epub and Kindle

A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.

A Practical Guide to Data Mining for Business and Industry

A Practical Guide to Data Mining for Business and Industry
Title A Practical Guide to Data Mining for Business and Industry PDF eBook
Author Andrea Ahlemeyer-Stubbe
Publisher John Wiley & Sons
Pages 323
Release 2014-03-31
Genre Mathematics
ISBN 1118763378

Download A Practical Guide to Data Mining for Business and Industry Book in PDF, Epub and Kindle

Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.