The Bootstrap and Edgeworth Expansion

The Bootstrap and Edgeworth Expansion
Title The Bootstrap and Edgeworth Expansion PDF eBook
Author Peter Hall
Publisher Springer Science & Business Media
Pages 359
Release 2013-12-01
Genre Mathematics
ISBN 146124384X

Download The Bootstrap and Edgeworth Expansion Book in PDF, Epub and Kindle

This monograph addresses two quite different topics, each being able to shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. The first two chapters deal with the bootstrap and Edgeworth expansion respectively, while chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properties of the bootstrap. The book is aimed at graduate level for those with some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter such that mathematically able readers without knowledge of the rigorous theory of probability will have no trouble understanding most of the book.

An Introduction to the Bootstrap

An Introduction to the Bootstrap
Title An Introduction to the Bootstrap PDF eBook
Author Bradley Efron
Publisher CRC Press
Pages 456
Release 1994-05-15
Genre Mathematics
ISBN 9780412042317

Download An Introduction to the Bootstrap Book in PDF, Epub and Kindle

Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.

Asymptotic Theory of Statistics and Probability

Asymptotic Theory of Statistics and Probability
Title Asymptotic Theory of Statistics and Probability PDF eBook
Author Anirban DasGupta
Publisher Springer Science & Business Media
Pages 726
Release 2008-03-07
Genre Mathematics
ISBN 0387759700

Download Asymptotic Theory of Statistics and Probability Book in PDF, Epub and Kindle

This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.

The Bootstrap and Edgeworth Expansion

The Bootstrap and Edgeworth Expansion
Title The Bootstrap and Edgeworth Expansion PDF eBook
Author Peter Hall
Publisher Springer
Pages 354
Release 1992-01-09
Genre Mathematics
ISBN 9780387977201

Download The Bootstrap and Edgeworth Expansion Book in PDF, Epub and Kindle

This monograph addresses two quite different topics, each being able to shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. The first two chapters deal with the bootstrap and Edgeworth expansion respectively, while chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properties of the bootstrap. The book is aimed at graduate level for those with some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter such that mathematically able readers without knowledge of the rigorous theory of probability will have no trouble understanding most of the book.

Subsampling

Subsampling
Title Subsampling PDF eBook
Author Dimitris N. Politis
Publisher Springer Science & Business Media
Pages 359
Release 2012-12-06
Genre Mathematics
ISBN 1461215544

Download Subsampling Book in PDF, Epub and Kindle

Since Efron's profound paper on the bootstrap, an enormous amount of effort has been spent on the development of bootstrap, jacknife, and other resampling methods. The primary goal of these computer-intensive methods has been to provide statistical tools that work in complex situations without imposing unrealistic or unverifiable assumptions about the data generating mechanism. This book sets out to lay some of the foundations for subsampling methodology and related methods.

Resampling Methods for Dependent Data

Resampling Methods for Dependent Data
Title Resampling Methods for Dependent Data PDF eBook
Author S. N. Lahiri
Publisher Springer Science & Business Media
Pages 382
Release 2013-03-09
Genre Mathematics
ISBN 147573803X

Download Resampling Methods for Dependent Data Book in PDF, Epub and Kindle

By giving a detailed account of bootstrap methods and their properties for dependent data, this book provides illustrative numerical examples throughout. The book fills a gap in the literature covering research on re-sampling methods for dependent data that has witnessed vigorous growth over the last two decades but remains scattered in various statistics and econometrics journals. It can be used as a graduate level text and also as a research monograph for statisticians and econometricians.

The Weighted Bootstrap

The Weighted Bootstrap
Title The Weighted Bootstrap PDF eBook
Author Philippe Barbe
Publisher Springer Science & Business Media
Pages 236
Release 2012-12-06
Genre Mathematics
ISBN 1461225329

Download The Weighted Bootstrap Book in PDF, Epub and Kindle

INTRODUCTION 1) Introduction In 1979, Efron introduced the bootstrap method as a kind of universal tool to obtain approximation of the distribution of statistics. The now well known underlying idea is the following : consider a sample X of Xl ' n independent and identically distributed H.i.d.) random variables (r. v,'s) with unknown probability measure (p.m.) P . Assume we are interested in approximating the distribution of a statistical functional T(P ) the -1 nn empirical counterpart of the functional T(P) , where P n := n l:i=l aX. is 1 the empirical p.m. Since in some sense P is close to P when n is large, n • • LLd. from P and builds the empirical p.m. if one samples Xl ' ... , Xm n n -1 mn • • P T(P ) conditionally on := mn l: i =1 a • ' then the behaviour of P m n,m n n n X. 1 T(P ) should imitate that of when n and mn get large. n This idea has lead to considerable investigations to see when it is correct, and when it is not. When it is not, one looks if there is any way to adapt it.