The Ambient Metric (AM-178)
Title | The Ambient Metric (AM-178) PDF eBook |
Author | Charles Fefferman |
Publisher | Princeton University Press |
Pages | 125 |
Release | 2012 |
Genre | Mathematics |
ISBN | 0691153140 |
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.
Symmetries and Overdetermined Systems of Partial Differential Equations
Title | Symmetries and Overdetermined Systems of Partial Differential Equations PDF eBook |
Author | Michael Eastwood |
Publisher | Springer Science & Business Media |
Pages | 565 |
Release | 2009-04-23 |
Genre | Mathematics |
ISBN | 0387738312 |
This three-week summer program considered the symmetries preserving various natural geometric structures. There are two parts to the proceedings. The articles in the first part are expository but all contain significant new material. The articles in the second part are concerned with original research. All articles were thoroughly refereed and the range of interrelated work ensures that this will be an extremely useful collection.
Geometry, Lie Theory and Applications
Title | Geometry, Lie Theory and Applications PDF eBook |
Author | Sigbjørn Hervik |
Publisher | Springer Nature |
Pages | 337 |
Release | 2022-02-07 |
Genre | Mathematics |
ISBN | 3030812960 |
This book consists of contributions from the participants of the Abel Symposium 2019 held in Ålesund, Norway. It was centered about applications of the ideas of symmetry and invariance, including equivalence and deformation theory of geometric structures, classification of differential invariants and invariant differential operators, integrability analysis of equations of mathematical physics, progress in parabolic geometry and mathematical aspects of general relativity. The chapters are written by leading international researchers, and consist of both survey and research articles. The book gives the reader an insight into the current research in differential geometry and Lie theory, as well as applications of these topics, in particular to general relativity and string theory.
The Ambient Metric
Title | The Ambient Metric PDF eBook |
Author | Charles Fefferman |
Publisher | Princeton University Press |
Pages | 124 |
Release | 2011-11-14 |
Genre | Mathematics |
ISBN | 1400840589 |
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.
Dynamics, Games and Science I
Title | Dynamics, Games and Science I PDF eBook |
Author | Mauricio Matos Peixoto |
Publisher | Springer Science & Business Media |
Pages | 812 |
Release | 2011-03-29 |
Genre | Mathematics |
ISBN | 3642114563 |
Dynamics, Games and Science I and II are a selection of surveys and research articles written by leading researchers in mathematics. The majority of the contributions are on dynamical systems and game theory, focusing either on fundamental and theoretical developments or on applications to modeling in biology, ecomonics, engineering, finances and psychology. The papers are based on talks given at the International Conference DYNA 2008, held in honor of Mauricio Peixoto and David Rand at the University of Braga, Portugal, on September 8-12, 2008. The aim of these volumes is to present cutting-edge research in these areas to encourage graduate students and researchers in mathematics and other fields to develop them further.
The Diverse World of PDEs
Title | The Diverse World of PDEs PDF eBook |
Author | I. S. Krasil′shchik |
Publisher | American Mathematical Society |
Pages | 250 |
Release | 2023-08-21 |
Genre | Mathematics |
ISBN | 1470471477 |
This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at the Independent University of Moscow and Moscow State University, Moscow, Russia. The papers are devoted to various interrelations of nonlinear PDEs with geometry and integrable systems. The topics discussed are: gravitational and electromagnetic fields in General Relativity, nonlocal geometry of PDEs, Legendre foliated cocycles on contact manifolds, presymplectic gauge PDEs and Lagrangian BV formalism, jet geometry and high-order phase transitions, bi-Hamiltonian structures of KdV type, bundles of Weyl structures, Lax representations via twisted extensions of Lie algebras, energy functionals and normal forms of knots, and differential invariants of inviscid flows. The companion volume (Contemporary Mathematics, Volume 789) is devoted to Algebraic and Cohomological Aspects of PDEs.
Environmental Health Perspectives
Title | Environmental Health Perspectives PDF eBook |
Author | |
Publisher | |
Pages | 820 |
Release | 1993 |
Genre | Environmental health |
ISBN |