The Algebra of Invariants

The Algebra of Invariants
Title The Algebra of Invariants PDF eBook
Author John Hilton Grace
Publisher
Pages 410
Release 1903
Genre Algebra
ISBN

Download The Algebra of Invariants Book in PDF, Epub and Kindle

The Theory of Algebraic Number Fields

The Theory of Algebraic Number Fields
Title The Theory of Algebraic Number Fields PDF eBook
Author David Hilbert
Publisher Springer Science & Business Media
Pages 360
Release 2013-03-14
Genre Mathematics
ISBN 3662035456

Download The Theory of Algebraic Number Fields Book in PDF, Epub and Kindle

A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.

Lectures on Invariant Theory

Lectures on Invariant Theory
Title Lectures on Invariant Theory PDF eBook
Author Igor Dolgachev
Publisher Cambridge University Press
Pages 244
Release 2003-08-07
Genre Mathematics
ISBN 9780521525480

Download Lectures on Invariant Theory Book in PDF, Epub and Kindle

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Algebraic Homogeneous Spaces and Invariant Theory

Algebraic Homogeneous Spaces and Invariant Theory
Title Algebraic Homogeneous Spaces and Invariant Theory PDF eBook
Author Frank D. Grosshans
Publisher Springer
Pages 158
Release 2006-11-14
Genre Mathematics
ISBN 3540696172

Download Algebraic Homogeneous Spaces and Invariant Theory Book in PDF, Epub and Kindle

The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics.

Invariant Theory

Invariant Theory
Title Invariant Theory PDF eBook
Author T.A. Springer
Publisher Springer
Pages 118
Release 2006-11-14
Genre Mathematics
ISBN 3540373705

Download Invariant Theory Book in PDF, Epub and Kindle

Actions and Invariants of Algebraic Groups

Actions and Invariants of Algebraic Groups
Title Actions and Invariants of Algebraic Groups PDF eBook
Author Walter Ricardo Ferrer Santos
Publisher CRC Press
Pages 479
Release 2017-09-19
Genre Mathematics
ISBN 1482239167

Download Actions and Invariants of Algebraic Groups Book in PDF, Epub and Kindle

Actions and Invariants of Algebraic Groups, Second Edition presents a self-contained introduction to geometric invariant theory starting from the basic theory of affine algebraic groups and proceeding towards more sophisticated dimensions." Building on the first edition, this book provides an introduction to the theory by equipping the reader with the tools needed to read advanced research in the field. Beginning with commutative algebra, algebraic geometry and the theory of Lie algebras, the book develops the necessary background of affine algebraic groups over an algebraically closed field, and then moves toward the algebraic and geometric aspects of modern invariant theory and quotients.

Symmetry, Representations, and Invariants

Symmetry, Representations, and Invariants
Title Symmetry, Representations, and Invariants PDF eBook
Author Roe Goodman
Publisher Springer Science & Business Media
Pages 731
Release 2009-07-30
Genre Mathematics
ISBN 0387798528

Download Symmetry, Representations, and Invariants Book in PDF, Epub and Kindle

Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.