Text Mining and Visualization
Title | Text Mining and Visualization PDF eBook |
Author | Markus Hofmann |
Publisher | CRC Press |
Pages | 337 |
Release | 2016-01-05 |
Genre | Business & Economics |
ISBN | 148223758X |
Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors-all highly experienced with text mining and open-source software-explain how text data are gathered and processed from a w
Text Mining with R
Title | Text Mining with R PDF eBook |
Author | Julia Silge |
Publisher | "O'Reilly Media, Inc." |
Pages | 193 |
Release | 2017-06-12 |
Genre | Computers |
ISBN | 1491981628 |
Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.
Visualizing with Text
Title | Visualizing with Text PDF eBook |
Author | Richard Brath |
Publisher | CRC Press |
Pages | 299 |
Release | 2020-11-01 |
Genre | Computers |
ISBN | 1000196798 |
Visualizing with Text uncovers the rich palette of text elements usable in visualizations from simple labels through to documents. Using a multidisciplinary research effort spanning across fields including visualization, typography, and cartography, it builds a solid foundation for the design space of text in visualization. The book illustrates many new kinds of visualizations, including microtext lines, skim formatting, and typographic sets that solve some of the shortcomings of well-known visualization techniques. Key features: More than 240 illustrations to aid inspiration of new visualizations Eight new approaches to data visualization leveraging text Quick reference guide for visualization with text Builds a solid foundation extending current visualization theory Bridges between visualization, typography, text analytics, and natural language processing The author website, including teaching exercises and interactive demos and code, can be found here. Designers, developers, and academics can use this book as a reference and inspiration for new approaches to visualization in any application that uses text.
Visual Data Mining
Title | Visual Data Mining PDF eBook |
Author | Simeon Simoff |
Publisher | Springer |
Pages | 417 |
Release | 2008-07-23 |
Genre | Computers |
ISBN | 3540710809 |
Visual Data Mining—Opening the Black Box Knowledge discovery holds the promise of insight into large, otherwise opaque datasets. Thenatureofwhatmakesaruleinterestingtoauserhasbeendiscussed 1 widely but most agree that it is a subjective quality based on the practical u- fulness of the information. Being subjective, the user needs to provide feedback to the system and, as is the case for all systems, the sooner the feedback is given the quicker it can in?uence the behavior of the system. There have been some impressive research activities over the past few years but the question to be asked is why is visual data mining only now being - vestigated commercially? Certainly, there have been arguments for visual data 2 mining for a number of years – Ankerst and others argued in 2002 that current (autonomous and opaque) analysis techniques are ine?cient, as they fail to - rectly embed the user in dataset exploration and that a better solution involves the user and algorithm being more tightly coupled. Grinstein stated that the “current state of the art data mining tools are automated, but the perfect data mining tool is interactive and highly participatory,” while Han has suggested that the “data selection and viewing of mining results should be fully inter- tive, the mining process should be more interactive than the current state of the 2 art and embedded applications should be fairly automated . ” A good survey on 3 techniques until 2003 was published by de Oliveira and Levkowitz .
Text Mining
Title | Text Mining PDF eBook |
Author | Ashok N. Srivastava |
Publisher | CRC Press |
Pages | 330 |
Release | 2009-06-15 |
Genre | Business & Economics |
ISBN | 1420059459 |
The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the FieldGiving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify te
Data Mining and Data Visualization
Title | Data Mining and Data Visualization PDF eBook |
Author | |
Publisher | Elsevier |
Pages | 660 |
Release | 2005-05-02 |
Genre | Mathematics |
ISBN | 0080459404 |
Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. - Distinguished contributors who are international experts in aspects of data mining - Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data - Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data - Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions - Thorough discussion of data visualization issues blending statistical, human factors, and computational insights
The Text Mining Handbook
Title | The Text Mining Handbook PDF eBook |
Author | Ronen Feldman |
Publisher | Cambridge University Press |
Pages | 423 |
Release | 2007 |
Genre | Computers |
ISBN | 0521836573 |
Publisher description