Dynamic Linear Models with R

Dynamic Linear Models with R
Title Dynamic Linear Models with R PDF eBook
Author Giovanni Petris
Publisher Springer Science & Business Media
Pages 258
Release 2009-06-12
Genre Mathematics
ISBN 0387772383

Download Dynamic Linear Models with R Book in PDF, Epub and Kindle

State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Specification Analysis in the Linear Model

Specification Analysis in the Linear Model
Title Specification Analysis in the Linear Model PDF eBook
Author Maxwell L. King
Publisher Routledge
Pages 366
Release 2018-03-05
Genre Business & Economics
ISBN 1351140671

Download Specification Analysis in the Linear Model Book in PDF, Epub and Kindle

Originally published in 1987. This collection of original papers deals with various issues of specification in the context of the linear statistical model. The volume honours the early econometric work of Donald Cochrane, late Dean of Economics and Politics at Monash University in Australia. The chapters focus on problems associated with autocorrelation of the error term in the linear regression model and include appraisals of early work on this topic by Cochrane and Orcutt. The book includes an extensive survey of autocorrelation tests; some exact finite-sample tests; and some issues in preliminary test estimation. A wide range of other specification issues is discussed, including the implications of random regressors for Bayesian prediction; modelling with joint conditional probability functions; and results from duality theory. There is a major survey chapter dealing with specification tests for non-nested models, and some of the applications discussed by the contributors deal with the British National Accounts and with Australian financial and housing markets.

Testing for Autocorrelation in Dynamic Linear Models

Testing for Autocorrelation in Dynamic Linear Models
Title Testing for Autocorrelation in Dynamic Linear Models PDF eBook
Author Trevor Stanley Breusch
Publisher
Pages 68
Release 1977
Genre Econometrics
ISBN 9780909541538

Download Testing for Autocorrelation in Dynamic Linear Models Book in PDF, Epub and Kindle

Applied Econometrics with R

Applied Econometrics with R
Title Applied Econometrics with R PDF eBook
Author Christian Kleiber
Publisher Springer Science & Business Media
Pages 229
Release 2008-12-10
Genre Business & Economics
ISBN 0387773185

Download Applied Econometrics with R Book in PDF, Epub and Kindle

R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.

The Linear Regression Model Under Test

The Linear Regression Model Under Test
Title The Linear Regression Model Under Test PDF eBook
Author W. Kraemer
Publisher Springer Science & Business Media
Pages 195
Release 2012-12-06
Genre Mathematics
ISBN 3642958761

Download The Linear Regression Model Under Test Book in PDF, Epub and Kindle

This monograph grew out of joint work with various dedicated colleagues and students at the Vienna Institute for Advanced Studies. We would probably never have begun without the impetus of Johann Maurer, who for some time was the spiritus rector behind the Institute's macromodel of the Austrian economy. Manfred Deistler provided sustained stimulation for our research through many discussions in his econometric research seminar. Similar credits are due to Adrian Pagan, Roberto Mariano and Garry Phillips, the econometrics guest professors at the Institute in the 1982 - 1984 period, who through their lectures and advice have contributed greatly to our effort. Hans SchneeweiB offered helpful comments on an earlier version of the manuscript, and Benedikt Poetscher was always willing to lend a helping . hand when we had trouble with the mathematics of the tests. Needless to say that any errors are our own. Much of the programming for the tests and for the Monte Carlo experiments was done by Petr Havlik, Karl Kontrus and Raimund Alt. Without their assistance, our research project would have been impossible. Petr Havlik and Karl Kontrus in addition. read and criticized portions of the manuscript, and were of great help in reducing our error rate. Many of the more theoretical results in this monograph would never have come to light without the mathematical expertise of Werner Ploberger, who provided most of the statistical background of the chapter on testing for structural change . .

Advanced Econometrics

Advanced Econometrics
Title Advanced Econometrics PDF eBook
Author Takeshi Amemiya
Publisher Harvard University Press
Pages 540
Release 1985
Genre Business & Economics
ISBN 9780674005600

Download Advanced Econometrics Book in PDF, Epub and Kindle

The main features of this text are a thorough treatment of cross-section models—including qualitative response models, censored and truncated regression models, and Markov and duration models—and a rigorous presentation of large sample theory, classical least-squares and generalized least-squares theory, and nonlinear simultaneous equation models.

The Implementation and Constructive Use of Misspecification Tests in Econometrics

The Implementation and Constructive Use of Misspecification Tests in Econometrics
Title The Implementation and Constructive Use of Misspecification Tests in Econometrics PDF eBook
Author L. G. Godfrey
Publisher Manchester University Press
Pages 402
Release 1992
Genre Business & Economics
ISBN 9780719032745

Download The Implementation and Constructive Use of Misspecification Tests in Econometrics Book in PDF, Epub and Kindle

This is a collection of papers co-authored by members of the Department of Economics and Related Studies and the Institute for Research in the Social Sciences at the University of York, which deals with methods for calculating asymptotically valid tests for use with samples of the size available in empirical economics. The papers also address the scope for using test statistics to determine the nature of specification errors and for providing suitable corrections to estimates or parameters.