Tensor Spaces and Exterior Algebra
Title | Tensor Spaces and Exterior Algebra PDF eBook |
Author | Takeo Yokonuma |
Publisher | American Mathematical Soc. |
Pages | 148 |
Release | 1992 |
Genre | Mathematics |
ISBN | 9780821827963 |
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. to facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. in particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
Linear Algebra Via Exterior Products
Title | Linear Algebra Via Exterior Products PDF eBook |
Author | Sergei Winitzki |
Publisher | Sergei Winitzki |
Pages | 286 |
Release | 2009-07-30 |
Genre | Science |
ISBN | 140929496X |
This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, "wedge") product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.
Tensors: Geometry and Applications
Title | Tensors: Geometry and Applications PDF eBook |
Author | J. M. Landsberg |
Publisher | American Mathematical Soc. |
Pages | 464 |
Release | 2011-12-14 |
Genre | Mathematics |
ISBN | 0821869078 |
Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.
What Are Tensors Exactly?
Title | What Are Tensors Exactly? PDF eBook |
Author | Hongyu Guo |
Publisher | World Scientific |
Pages | 246 |
Release | 2021-06-16 |
Genre | Mathematics |
ISBN | 9811241031 |
Tensors have numerous applications in physics and engineering. There is often a fuzzy haze surrounding the concept of tensor that puzzles many students. The old-fashioned definition is difficult to understand because it is not rigorous; the modern definitions are difficult to understand because they are rigorous but at a cost of being more abstract and less intuitive.The goal of this book is to elucidate the concepts in an intuitive way but without loss of rigor, to help students gain deeper understanding. As a result, they will not need to recite those definitions in a parrot-like manner any more. This volume answers common questions and corrects many misconceptions about tensors. A large number of illuminating illustrations helps the reader to understand the concepts more easily.This unique reference text will benefit researchers, professionals, academics, graduate students and undergraduate students.
Algebra: Chapter 0
Title | Algebra: Chapter 0 PDF eBook |
Author | Paolo Aluffi |
Publisher | American Mathematical Soc. |
Pages | 713 |
Release | 2021-11-09 |
Genre | Education |
ISBN | 147046571X |
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Mathematics For Physics: An Illustrated Handbook
Title | Mathematics For Physics: An Illustrated Handbook PDF eBook |
Author | Adam Marsh |
Publisher | World Scientific |
Pages | 301 |
Release | 2017-11-27 |
Genre | Science |
ISBN | 9813233931 |
This unique book complements traditional textbooks by providing a visual yet rigorous survey of the mathematics used in theoretical physics beyond that typically covered in undergraduate math and physics courses. The exposition is pedagogical but compact, and the emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints. Certain topics which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations, are avoided. The primary physical models targeted are general relativity, spinors, and gauge theories, with notable chapters on Riemannian geometry, Clifford algebras, and fiber bundles.
Differential Forms and Connections
Title | Differential Forms and Connections PDF eBook |
Author | R. W. R. Darling |
Publisher | Cambridge University Press |
Pages | 288 |
Release | 1994-09-22 |
Genre | Mathematics |
ISBN | 9780521468008 |
Introducing the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--this textbook covers both classical surface theory, the modern theory of connections, and curvature. With no knowledge of topology assumed, the only prerequisites are multivariate calculus and linear algebra.