Tensor Calculus for Engineers and Physicists
Title | Tensor Calculus for Engineers and Physicists PDF eBook |
Author | Emil de Souza Sánchez Filho |
Publisher | Springer |
Pages | 370 |
Release | 2016-05-20 |
Genre | Technology & Engineering |
ISBN | 331931520X |
This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of n-dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without needing to resort to other bibliographical sources on tensors. Chapter 1 deals with Fundamental Concepts about tensors and chapter 2 is devoted to the study of covariant, absolute and contravariant derivatives. The chapters 3 and 4 are dedicated to the Integral Theorems and Differential Operators, respectively. Chapter 5 deals with Riemann Spaces, and finally the chapter 6 presents a concise study of the Parallelism of Vectors. It also shows how to solve various problems of several particular manifolds.
Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds
Title | Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds PDF eBook |
Author | Uwe Mühlich |
Publisher | Springer |
Pages | 134 |
Release | 2017-04-18 |
Genre | Science |
ISBN | 3319562649 |
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers
Title | Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers PDF eBook |
Author | Hung Nguyen-Schäfer |
Publisher | Springer |
Pages | 389 |
Release | 2016-08-16 |
Genre | Technology & Engineering |
ISBN | 3662484978 |
This book presents tensors and differential geometry in a comprehensive and approachable manner, providing a bridge from the place where physics and engineering mathematics end, and the place where tensor analysis begins. Among the topics examined are tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. The book includes numerous examples with solutions and concrete calculations, which guide readers through these complex topics step by step. Mindful of the practical needs of engineers and physicists, book favors simplicity over a more rigorous, formal approach. The book shows readers how to work with tensors and differential geometry and how to apply them to modeling the physical and engineering world. The authors provide chapter-length treatment of topics at the intersection of advanced mathematics, and physics and engineering: • General Basis and Bra-Ket Notation • Tensor Analysis • Elementary Differential Geometry • Differential Forms • Applications of Tensors and Differential Geometry • Tensors and Bra-Ket Notation in Quantum Mechanics The text reviews methods and applications in computational fluid dynamics; continuum mechanics; electrodynamics in special relativity; cosmology in the Minkowski four-dimensional space time; and relativistic and non-relativistic quantum mechanics. Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers benefits research scientists and practicing engineers in a variety of fields, who use tensor analysis and differential geometry in the context of applied physics, and electrical and mechanical engineering. It will also interest graduate students in applied physics and engineering.
Vector and Tensor Analysis with Applications
Title | Vector and Tensor Analysis with Applications PDF eBook |
Author | A. I. Borisenko |
Publisher | Courier Corporation |
Pages | 292 |
Release | 2012-08-28 |
Genre | Mathematics |
ISBN | 0486131904 |
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
A Brief on Tensor Analysis
Title | A Brief on Tensor Analysis PDF eBook |
Author | James G. Simmonds |
Publisher | Springer Science & Business Media |
Pages | 124 |
Release | 2012-10-31 |
Genre | Mathematics |
ISBN | 1441985220 |
In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.
Tensor Calculus
Title | Tensor Calculus PDF eBook |
Author | J. L. Synge |
Publisher | Courier Corporation |
Pages | 340 |
Release | 2012-04-26 |
Genre | Mathematics |
ISBN | 048614139X |
Fundamental introduction of absolute differential calculus and for those interested in applications of tensor calculus to mathematical physics and engineering. Topics include spaces and tensors; basic operations in Riemannian space, curvature of space, more.
Linear Algebra and Group Theory for Physicists and Engineers
Title | Linear Algebra and Group Theory for Physicists and Engineers PDF eBook |
Author | Yair Shapira |
Publisher | Springer Nature |
Pages | 583 |
Release | 2023-01-16 |
Genre | Mathematics |
ISBN | 3031224221 |
This textbook demonstrates the strong interconnections between linear algebra and group theory by presenting them simultaneously, a pedagogical strategy ideal for an interdisciplinary audience. Being approached together at the same time, these two topics complete one another, allowing students to attain a deeper understanding of both subjects. The opening chapters introduce linear algebra with applications to mechanics and statistics, followed by group theory with applications to projective geometry. Then, high-order finite elements are presented to design a regular mesh and assemble the stiffness and mass matrices in advanced applications in quantum chemistry and general relativity. This text is ideal for undergraduates majoring in engineering, physics, chemistry, computer science, or applied mathematics. It is mostly self-contained—readers should only be familiar with elementary calculus. There are numerous exercises, with hints or full solutions provided. A series of roadmaps are also provided to help instructors choose the optimal teaching approach for their discipline. The second edition has been revised and updated throughout and includes new material on the Jordan form, the Hermitian matrix and its eigenbasis, and applications in numerical relativity and electromagnetics.