Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis
Title | Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis PDF eBook |
Author | Hugh L. Montgomery |
Publisher | American Mathematical Soc. |
Pages | 242 |
Release | 1994 |
Genre | Mathematics |
ISBN | 0821807374 |
This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.
Analytic Number Theory
Title | Analytic Number Theory PDF eBook |
Author | W. W. L. Chen |
Publisher | Cambridge University Press |
Pages | 493 |
Release | 2009-02-19 |
Genre | Mathematics |
ISBN | 0521515386 |
A collection of papers inspired by the work of Britain's first Fields Medallist, Klaus Roth.
A Course in Analytic Number Theory
Title | A Course in Analytic Number Theory PDF eBook |
Author | Marius Overholt |
Publisher | American Mathematical Soc. |
Pages | 394 |
Release | 2014-12-30 |
Genre | Mathematics |
ISBN | 1470417065 |
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
Twentieth Century Harmonic Analysis
Title | Twentieth Century Harmonic Analysis PDF eBook |
Author | J.S. Byrnes |
Publisher | Springer Science & Business Media |
Pages | 411 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 9401006628 |
Almost a century ago, harmonic analysis entered a (still continuing) Golden Age, with the emergence of many great masters throughout Europe. They created a wealth of profound analytic methods, to be successfully exploited and further developed by succeeding generations. This flourishing of harmonic analysis is today as lively as ever, as the papers presented here demonstrate. In addition to its own ongoing internal development and its basic role in other areas of mathematics, physics and chemistry, financial analysis, medicine, and biological signal processing, harmonic analysis has made fundamental contributions to essentially all twentieth century technology-based human endeavours, including telephone, radio, television, radar, sonar, satellite communications, medical imaging, the Internet, and multimedia. This ubiquitous nature of the subject is amply illustrated. The book not only promotes the infusion of new mathematical tools into applied harmonic analysis, but also to fuel the development of applied mathematics by providing opportunities for young engineers, mathematicians and other scientists to learn more about problem areas in today's technology that might benefit from new mathematical insights.
Analytic Number Theory:The Halberstam Festschrift 2
Title | Analytic Number Theory:The Halberstam Festschrift 2 PDF eBook |
Author | Bruce C. Berndt |
Publisher | Springer Science & Business Media |
Pages | 464 |
Release | 1996-05-01 |
Genre | Mathematics |
ISBN | 9780817639334 |
The second of two volumes presenting papers from an international conference on analytic number theory. The two volumes contain 50 papers, with an emphasis on topics such as sieves, related combinatorial aspects, multiplicative number theory, additive number theory, and Riemann zeta-function.
Number Theory, Fourier Analysis and Geometric Discrepancy
Title | Number Theory, Fourier Analysis and Geometric Discrepancy PDF eBook |
Author | Giancarlo Travaglini |
Publisher | Cambridge University Press |
Pages | 251 |
Release | 2014-06-12 |
Genre | Mathematics |
ISBN | 1139992821 |
The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma–Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions.
Harmonic Analysis and Number Theory
Title | Harmonic Analysis and Number Theory PDF eBook |
Author | Carl Herz |
Publisher | American Mathematical Soc. |
Pages | 248 |
Release | 1997 |
Genre | Mathematics |
ISBN | 9780821807941 |
This volume presents the proceedings of a conference on Harmonic Analysis and Number Theory held at McGill University (Montreal) in April 1996. The papers are dedicated to the memory of Carl Herz, who had deep interests in both harmonic analysis and number theory. These two disciplines have a symbiotic relationship that is reflected in the papers in this book.