Temperature Coupling Effects in Radiatively Heated Particle-laden Flows

Temperature Coupling Effects in Radiatively Heated Particle-laden Flows
Title Temperature Coupling Effects in Radiatively Heated Particle-laden Flows PDF eBook
Author Ji Hoon Kim
Publisher
Pages
Release 2022
Genre
ISBN

Download Temperature Coupling Effects in Radiatively Heated Particle-laden Flows Book in PDF, Epub and Kindle

Turbulent particle-laden flows are common in many natural phenomena and engineering applications. While particle-laden turbulence is a relatively well-studied subject, not many studies address the concurrent effect of an radiative heat transfer on the multiphase system. Understanding such an interaction can be key to designing effective spray combustors, fire suppression systems, and particle solar receivers. Using the particle solar receiver as a test bed for investigation, this work aims to experimentally investigate the coupling between radiation, turbulence, and particles in such a system using two different flow configurations of a duct flow and an isokinetic co-flowing jet. The goals of the work are to examine the effects of preferential concentration on the behavior of the radiation transport through the disperse medium and the convective heat transfer between the carrier and disperse phase. In addition, it also aims to study the converse effect of how the radiative heating can effect the clustering behavior of the particles by examining measures of preferential concentration of particles in the flow in the presence of radiative heating. The study finds that the preferential concentration of particles can cause the radiation transmission to deviate from a classical Beer's Law extinction behavior, due to increased line of sight distances in the medium. Measurements of the carrier phase temperature statistics show that large coherent particles clusters dominate the modulation of the gas phase temperature, especially in the boundary layer in wall-bounded flows. Measurements of the radial distribution function, clustering index, and Voronoi cell area PDFs all indicated a reduction of preferential concentration within clusters, particularly in denser clusters with smaller associated separation length scales, which correspond to the most intensely heated regions of the flow. Particle velocity statistics showed evidence of bulk turbulence modification by radiative heating, as particle velocity fluctuations were dampened. This was likely caused by variable property effects from temperature-dependent properties, specifically from the increase in fluid kinematic viscosity. Buoyancy and dilatation effects were identified as possible mechanisms for turbulence modification at the smaller cluster scales, supported by scaling analyses and directional measures of preferential concentration.

Journal of Thermophysics and Heat Transfer

Journal of Thermophysics and Heat Transfer
Title Journal of Thermophysics and Heat Transfer PDF eBook
Author
Publisher
Pages 550
Release 2001
Genre Heat
ISBN

Download Journal of Thermophysics and Heat Transfer Book in PDF, Epub and Kindle

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports
Title Scientific and Technical Aerospace Reports PDF eBook
Author
Publisher
Pages 704
Release 1995
Genre Aeronautics
ISBN

Download Scientific and Technical Aerospace Reports Book in PDF, Epub and Kindle

Thermal Radiation Heat Transfer

Thermal Radiation Heat Transfer
Title Thermal Radiation Heat Transfer PDF eBook
Author John R. Howell
Publisher CRC Press
Pages 1041
Release 2020-12-09
Genre Science
ISBN 1000257819

Download Thermal Radiation Heat Transfer Book in PDF, Epub and Kindle

The seventh edition of this classic text outlines the fundamental physical principles of thermal radiation, as well as analytical and numerical techniques for quantifying radiative transfer between surfaces and within participating media. The textbook includes newly expanded sections on surface properties, electromagnetic theory, scattering and absorption of particles, and near-field radiative transfer, and emphasizes the broader connections to thermodynamic principles. Sections on inverse analysis and Monte Carlo methods have been enhanced and updated to reflect current research developments, along with new material on manufacturing, renewable energy, climate change, building energy efficiency, and biomedical applications. Features: Offers full treatment of radiative transfer and radiation exchange in enclosures. Covers properties of surfaces and gaseous media, and radiative transfer equation development and solutions. Includes expanded coverage of inverse methods, electromagnetic theory, Monte Carlo methods, and scattering and absorption by particles. Features expanded coverage of near-field radiative transfer theory and applications. Discusses electromagnetic wave theory and how it is applied to thermal radiation transfer. This textbook is ideal for Professors and students involved in first-year or advanced graduate courses/modules in Radiative Heat Transfer in engineering programs. In addition, professional engineers, scientists and researchers working in heat transfer, energy engineering, aerospace and nuclear technology will find this an invaluable professional resource. Over 350 surface configuration factors are available online, many with online calculation capability. Online appendices provide information on related areas such as combustion, radiation in porous media, numerical methods, and biographies of important figures in the history of the field. A Solutions Manual is available for instructors adopting the text.

Radiative Heat Transfer in a Shocked Particle-laden Gaseous System

Radiative Heat Transfer in a Shocked Particle-laden Gaseous System
Title Radiative Heat Transfer in a Shocked Particle-laden Gaseous System PDF eBook
Author Jeffrey Lawrence Haferman
Publisher
Pages 488
Release 1991
Genre Gases
ISBN

Download Radiative Heat Transfer in a Shocked Particle-laden Gaseous System Book in PDF, Epub and Kindle

Dynamics of Multiphase Flows

Dynamics of Multiphase Flows
Title Dynamics of Multiphase Flows PDF eBook
Author Chao Zhu
Publisher Cambridge University Press
Pages 621
Release 2021-06-17
Genre Technology & Engineering
ISBN 1108657761

Download Dynamics of Multiphase Flows Book in PDF, Epub and Kindle

Understand multiphase flows using multidisciplinary knowledge in physical principles, modelling theories, and engineering practices. This essential text methodically introduces the important concepts, governing mechanisms, and state-of-the-art theories, using numerous real-world applications, examples, and problems. Covers all major types of multiphase flows, including gas-solid, gas-liquid (sprays or bubbling), liquid-solid, and gas-solid-liquid flows. Introduces the volume-time-averaged transport theorems and associated Lagrangian-trajectory modelling and Eulerian-Eulerian multi-fluid modelling. Explains typical computational techniques, measurement methods and four representative subjects of multiphase flow systems. Suitable as a reference for engineering students, researchers, and practitioners, this text explores and applies fundamental theories to the analysis of system performance using a case-based approach.

Thermal Radiation Heat Transfer, 5th Edition

Thermal Radiation Heat Transfer, 5th Edition
Title Thermal Radiation Heat Transfer, 5th Edition PDF eBook
Author John R. Howell
Publisher CRC Press
Pages 982
Release 2010-09-28
Genre Technology & Engineering
ISBN 1439894558

Download Thermal Radiation Heat Transfer, 5th Edition Book in PDF, Epub and Kindle

Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces—and where heat conduction is included within the boundaries. The book also covers the radiative properties of gases and addresses energy exchange when gases and other materials interact with radiative energy, as occurs in furnaces. To make this challenging subject matter easily understandable for students, the authors have revised and reorganized this textbook to produce a streamlined, practical learning tool that: Applies the common nomenclature adopted by the major heat transfer journals Consolidates past material, reincorporating much of the previous text into appendices Provides an updated, expanded, and alphabetized collection of references, assembling them in one appendix Offers a helpful list of symbols With worked-out examples, chapter-end homework problems, and other useful learning features, such as concluding remarks and historical notes, this new edition continues its tradition of serving both as a comprehensive textbook for those studying and applying radiative transfer, and as a repository of vital literary references for the serious researcher.