Teichmüller Theory in Riemannian Geometry

Teichmüller Theory in Riemannian Geometry
Title Teichmüller Theory in Riemannian Geometry PDF eBook
Author Anthony Tromba
Publisher Birkhauser
Pages 234
Release 1992
Genre Mathematics
ISBN

Download Teichmüller Theory in Riemannian Geometry Book in PDF, Epub and Kindle

Handbook of Teichmüller Theory

Handbook of Teichmüller Theory
Title Handbook of Teichmüller Theory PDF eBook
Author Athanase Papadopoulos
Publisher European Mathematical Society
Pages 812
Release 2007
Genre Mathematics
ISBN 9783037190296

Download Handbook of Teichmüller Theory Book in PDF, Epub and Kindle

The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.

An Introduction to Teichmüller Spaces

An Introduction to Teichmüller Spaces
Title An Introduction to Teichmüller Spaces PDF eBook
Author Yoichi Imayoshi
Publisher Springer Science & Business Media
Pages 291
Release 2012-12-06
Genre Mathematics
ISBN 4431681744

Download An Introduction to Teichmüller Spaces Book in PDF, Epub and Kindle

This book offers an easy and compact access to the theory of TeichmA1/4ller spaces, starting from the most elementary aspects to the most recent developments, e.g. the role this theory plays with regard to string theory. TeichmA1/4ller spaces give parametrization of all the complex structures on a given Riemann surface. This subject is related to many different areas of mathematics including complex analysis, algebraic geometry, differential geometry, topology in two and three dimensions, Kleinian and Fuchsian groups, automorphic forms, complex dynamics, and ergodic theory. Recently, TeichmA1/4ller spaces have begun to play an important role in string theory. Imayoshi and Taniguchi have attempted to make the book as self-contained as possible. They present numerous examples and heuristic arguments in order to help the reader grasp the ideas of TeichmA1/4ller theory. The book will be an excellent source of information for graduate students and reserachers in complex analysis and algebraic geometry as well as for theoretical physicists working in quantum theory.

Foundations of $p$-adic Teichmuller Theory

Foundations of $p$-adic Teichmuller Theory
Title Foundations of $p$-adic Teichmuller Theory PDF eBook
Author Shinichi Mochizuki
Publisher American Mathematical Soc.
Pages 546
Release 2014-01-06
Genre Mathematics
ISBN 1470412268

Download Foundations of $p$-adic Teichmuller Theory Book in PDF, Epub and Kindle

This book lays the foundation for a theory of uniformization of p-adic hyperbolic curves and their moduli. On one hand, this theory generalizes the Fuchsian and Bers uniformizations of complex hyperbolic curves and their moduli to nonarchimedian places. That is why in this book, the theory is referred to as p-adic Teichmüller theory, for short. On the other hand, the theory may be regarded as a fairly precise hyperbolic analog of the Serre-Tate theory of ordinary abelian varieties and their moduli. The theory of uniformization of p-adic hyperbolic curves and their moduli was initiated in a previous work by Mochizuki. And in some sense, this book is a continuation and generalization of that work. This book aims to bridge the gap between the approach presented and the classical uniformization of a hyperbolic Riemann surface that is studied in undergraduate complex analysis. Features: Presents a systematic treatment of the moduli space of curves from the point of view of p-adic Galois representations.Treats the analog of Serre-Tate theory for hyperbolic curves.Develops a p-adic analog of Fuchsian and Bers uniformization theories.Gives a systematic treatment of a "nonabelian example" of p-adic Hodge theory. Titles in this series are co-published with International Press of Boston, Inc., Cambridge, MA.

Teichmüller Theory and Applications to Geometry, Topology, and Dynamics

Teichmüller Theory and Applications to Geometry, Topology, and Dynamics
Title Teichmüller Theory and Applications to Geometry, Topology, and Dynamics PDF eBook
Author John Hamal Hubbard
Publisher
Pages 576
Release 2022-02
Genre
ISBN 9781943863013

Download Teichmüller Theory and Applications to Geometry, Topology, and Dynamics Book in PDF, Epub and Kindle

Dynamical Aspects of Teichmüller Theory

Dynamical Aspects of Teichmüller Theory
Title Dynamical Aspects of Teichmüller Theory PDF eBook
Author Carlos Matheus Silva Santos
Publisher Springer
Pages 132
Release 2018-07-09
Genre Mathematics
ISBN 3319921592

Download Dynamical Aspects of Teichmüller Theory Book in PDF, Epub and Kindle

This book is a remarkable contribution to the literature on dynamical systems and geometry. It consists of a selection of work in current research on Teichmüller dynamics, a field that has continued to develop rapidly in the past decades. After a comprehensive introduction, the author investigates the dynamics of the Teichmüller flow, presenting several self-contained chapters, each addressing a different aspect on the subject. The author includes innovative expositions, all the while solving open problems, constructing examples, and supplementing with illustrations. This book is a rare find in the field with its guidance and support for readers through the complex content of moduli spaces and Teichmüller Theory. The author is an internationally recognized expert in dynamical systems with a talent to explain topics that is rarely found in the field. He has created a text that would benefit specialists in, not only dynamical systems and geometry, but also Lie theory and number theory.

Decorated Teichmüller Theory

Decorated Teichmüller Theory
Title Decorated Teichmüller Theory PDF eBook
Author R. C. Penner
Publisher European Mathematical Society
Pages 388
Release 2012
Genre Teichmu ller spaces
ISBN 9783037190753

Download Decorated Teichmüller Theory Book in PDF, Epub and Kindle

There is an essentially ``tinker-toy'' model of a trivial bundle over the classical Teichmuller space of a punctured surface, called the decorated Teichmuller space, where the fiber over a point is the space of all tuples of horocycles, one about each puncture. This model leads to an extension of the classical mapping class groups called the Ptolemy groupoids and to certain matrix models solving related enumerative problems, each of which has proved useful both in mathematics and in theoretical physics. These spaces enjoy several related parametrizations leading to a rich and intricate algebro-geometric structure tied to the already elaborate combinatorial structure of the tinker-toy model. Indeed, the natural coordinates give the prototypical examples not only of cluster algebras but also of tropicalization. This interplay of combinatorics and coordinates admits further manifestations, for example, in a Lie theory for homeomorphisms of the circle, in the geometry underlying the Gauss product, in profinite and pronilpotent geometry, in the combinatorics underlying conformal and topological quantum field theories, and in the geometry and combinatorics of macromolecules. This volume gives the story a wider context of these decorated Teichmuller spaces as developed by the author over the last two decades in a series of papers, some of them in collaboration. Sometimes correcting errors or typos, sometimes simplifying proofs, and sometimes articulating more general formulations than the original research papers, this volume is self contained and requires little formal background. Based on a master's course at Aarhus University, it gives the first treatment of these works in monographic form.