Taylor Approximations for Stochastic Partial Differential Equations

Taylor Approximations for Stochastic Partial Differential Equations
Title Taylor Approximations for Stochastic Partial Differential Equations PDF eBook
Author Arnulf Jentzen
Publisher SIAM
Pages 234
Release 2011-01-01
Genre Mathematics
ISBN 9781611972016

Download Taylor Approximations for Stochastic Partial Differential Equations Book in PDF, Epub and Kindle

This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with Hl̲der continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.

Approximation of Stochastic Invariant Manifolds

Approximation of Stochastic Invariant Manifolds
Title Approximation of Stochastic Invariant Manifolds PDF eBook
Author Mickaël D. Chekroun
Publisher Springer
Pages 136
Release 2014-12-20
Genre Mathematics
ISBN 331912496X

Download Approximation of Stochastic Invariant Manifolds Book in PDF, Epub and Kindle

This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that unifies some other approximation approaches in the literature. A self-contained survey is also included on the existence and attraction of one-parameter families of stochastic invariant manifolds, from the point of view of the theory of random dynamical systems.

Stochastic Partial Differential Equations, Second Edition

Stochastic Partial Differential Equations, Second Edition
Title Stochastic Partial Differential Equations, Second Edition PDF eBook
Author Pao-Liu Chow
Publisher CRC Press
Pages 336
Release 2014-12-10
Genre Mathematics
ISBN 1466579552

Download Stochastic Partial Differential Equations, Second Edition Book in PDF, Epub and Kindle

Explore Theory and Techniques to Solve Physical, Biological, and Financial Problems Since the first edition was published, there has been a surge of interest in stochastic partial differential equations (PDEs) driven by the Lévy type of noise. Stochastic Partial Differential Equations, Second Edition incorporates these recent developments and improves the presentation of material. New to the Second Edition Two sections on the Lévy type of stochastic integrals and the related stochastic differential equations in finite dimensions Discussions of Poisson random fields and related stochastic integrals, the solution of a stochastic heat equation with Poisson noise, and mild solutions to linear and nonlinear parabolic equations with Poisson noises Two sections on linear and semilinear wave equations driven by the Poisson type of noises Treatment of the Poisson stochastic integral in a Hilbert space and mild solutions of stochastic evolutions with Poisson noises Revised proofs and new theorems, such as explosive solutions of stochastic reaction diffusion equations Additional applications of stochastic PDEs to population biology and finance Updated section on parabolic equations and related elliptic problems in Gauss–Sobolev spaces The book covers basic theory as well as computational and analytical techniques to solve physical, biological, and financial problems. It first presents classical concrete problems before proceeding to a unified theory of stochastic evolution equations and describing applications, such as turbulence in fluid dynamics, a spatial population growth model in a random environment, and a stochastic model in bond market theory. The author also explores the connection of stochastic PDEs to infinite-dimensional stochastic analysis.

Taylor Expansions for Stochastic Partial Differential Equations

Taylor Expansions for Stochastic Partial Differential Equations
Title Taylor Expansions for Stochastic Partial Differential Equations PDF eBook
Author Arnulf Jentzen
Publisher
Pages 205
Release 2009
Genre
ISBN

Download Taylor Expansions for Stochastic Partial Differential Equations Book in PDF, Epub and Kindle

Numerical Methods for Stochastic Partial Differential Equations with White Noise

Numerical Methods for Stochastic Partial Differential Equations with White Noise
Title Numerical Methods for Stochastic Partial Differential Equations with White Noise PDF eBook
Author Zhongqiang Zhang
Publisher Springer
Pages 391
Release 2017-09-01
Genre Mathematics
ISBN 3319575112

Download Numerical Methods for Stochastic Partial Differential Equations with White Noise Book in PDF, Epub and Kindle

This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations
Title Numerical Solution of Stochastic Differential Equations PDF eBook
Author Peter E. Kloeden
Publisher Springer Science & Business Media
Pages 666
Release 2013-04-17
Genre Mathematics
ISBN 3662126168

Download Numerical Solution of Stochastic Differential Equations Book in PDF, Epub and Kindle

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Effective Dynamics of Stochastic Partial Differential Equations

Effective Dynamics of Stochastic Partial Differential Equations
Title Effective Dynamics of Stochastic Partial Differential Equations PDF eBook
Author Jinqiao Duan
Publisher Elsevier
Pages 283
Release 2014-03-06
Genre Mathematics
ISBN 0128012692

Download Effective Dynamics of Stochastic Partial Differential Equations Book in PDF, Epub and Kindle

Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors’ experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations Solutions or hints to all Exercises