Synthesis of Model-Based and Data-Driven Approaches for Optimal Traffic Control

Synthesis of Model-Based and Data-Driven Approaches for Optimal Traffic Control
Title Synthesis of Model-Based and Data-Driven Approaches for Optimal Traffic Control PDF eBook
Author Urs Baumgart
Publisher
Pages 0
Release 2023
Genre
ISBN 9783839619520

Download Synthesis of Model-Based and Data-Driven Approaches for Optimal Traffic Control Book in PDF, Epub and Kindle

Control of Linear Parameter Varying Systems with Applications

Control of Linear Parameter Varying Systems with Applications
Title Control of Linear Parameter Varying Systems with Applications PDF eBook
Author Javad Mohammadpour
Publisher Springer Science & Business Media
Pages 554
Release 2012-03-08
Genre Technology & Engineering
ISBN 146141833X

Download Control of Linear Parameter Varying Systems with Applications Book in PDF, Epub and Kindle

Control of Linear Parameter Varying Systems compiles state-of-the-art contributions on novel analytical and computational methods for addressing system identification, model reduction, performance analysis and feedback control design and addresses address theoretical developments, novel computational approaches and illustrative applications to various fields. Part I discusses modeling and system identification of linear parameter varying systems, Part II covers the importance of analysis and control design when working with linear parameter varying systems (LPVS) , Finally, Part III presents an applications based approach to linear parameter varying systems, including modeling of a turbocharged diesel engines, Multivariable control of wind turbines, modeling and control of aircraft engines, control of an autonomous underwater vehicles and analysis and synthesis of re-entry vehicles.

Stochastic Hybrid Systems

Stochastic Hybrid Systems
Title Stochastic Hybrid Systems PDF eBook
Author Christos G. Cassandras
Publisher CRC Press
Pages 300
Release 2018-10-03
Genre Technology & Engineering
ISBN 1420008544

Download Stochastic Hybrid Systems Book in PDF, Epub and Kindle

Because they incorporate both time- and event-driven dynamics, stochastic hybrid systems (SHS) have become ubiquitous in a variety of fields, from mathematical finance to biological processes to communication networks to engineering. Comprehensively integrating numerous cutting-edge studies, Stochastic Hybrid Systems presents a captivating treatment of some of the most ambitious types of dynamic systems. Cohesively edited by leading experts in the field, the book introduces the theoretical basics, computational methods, and applications of SHS. It first discusses the underlying principles behind SHS and the main design limitations of SHS. Building on these fundamentals, the authoritative contributors present methods for computer calculations that apply SHS analysis and synthesis techniques in practice. The book concludes with examples of systems encountered in a wide range of application areas, including molecular biology, communication networks, and air traffic management. It also explains how to resolve practical problems associated with these systems. Stochastic Hybrid Systems achieves an ideal balance between a theoretical treatment of SHS and practical considerations. The book skillfully explores the interaction of physical processes with computerized equipment in an uncertain environment, enabling a better understanding of sophisticated as well as everyday devices and processes.

Smart Sustainable Cities of the Future

Smart Sustainable Cities of the Future
Title Smart Sustainable Cities of the Future PDF eBook
Author Simon Elias Bibri
Publisher Springer
Pages 685
Release 2018-02-24
Genre Political Science
ISBN 3319739816

Download Smart Sustainable Cities of the Future Book in PDF, Epub and Kindle

This book is intended to help explore the field of smart sustainable cities in its complexity, heterogeneity, and breadth, the many faces of a topical subject of major importance for the future that encompasses so much of modern urban life in an increasingly computerized and urbanized world. Indeed, sustainable urban development is currently at the center of debate in light of several ICT visions becoming achievable and deployable computing paradigms, and shaping the way cities will evolve in the future and thus tackle complex challenges. This book integrates computer science, data science, complexity science, sustainability science, system thinking, and urban planning and design. As such, it contains innovative computer–based and data–analytic research on smart sustainable cities as complex and dynamic systems. It provides applied theoretical contributions fostering a better understanding of such systems and the synergistic relationships between the underlying physical and informational landscapes. It offers contributions pertaining to the ongoing development of computer–based and data science technologies for the processing, analysis, management, modeling, and simulation of big and context data and the associated applicability to urban systems that will advance different aspects of sustainability. This book seeks to explicitly bring together the smart city and sustainable city endeavors, and to focus on big data analytics and context-aware computing specifically. In doing so, it amalgamates the design concepts and planning principles of sustainable urban forms with the novel applications of ICT of ubiquitous computing to primarily advance sustainability. Its strength lies in combining big data and context–aware technologies and their novel applications for the sheer purpose of harnessing and leveraging the disruptive and synergetic effects of ICT on forms of city planning that are required for future forms of sustainable development. This is because the effects of such technologies reinforce one another as to their efforts for transforming urban life in a sustainable way by integrating data–centric and context–aware solutions for enhancing urban systems and facilitating coordination among urban domains. This timely and comprehensive book is aimed at a wide audience across science, academia industry, and policymaking. It provides the necessary material to inform relevant research communities of the state–of–the–art research and the latest development in the area of smart sustainable urban development, as well as a valuable reference for planners, designers, strategists, and ICT experts who are working towards the development and implementation of smart sustainable cities based on big data analytics and context–aware computing.

Dynamic Mode Decomposition

Dynamic Mode Decomposition
Title Dynamic Mode Decomposition PDF eBook
Author J. Nathan Kutz
Publisher SIAM
Pages 241
Release 2016-11-23
Genre Science
ISBN 1611974496

Download Dynamic Mode Decomposition Book in PDF, Epub and Kindle

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

The Multi-Agent Transport Simulation MATSim

The Multi-Agent Transport Simulation MATSim
Title The Multi-Agent Transport Simulation MATSim PDF eBook
Author Andreas Horni
Publisher Ubiquity Press
Pages 620
Release 2016-08-10
Genre Technology & Engineering
ISBN 190918876X

Download The Multi-Agent Transport Simulation MATSim Book in PDF, Epub and Kindle

The MATSim (Multi-Agent Transport Simulation) software project was started around 2006 with the goal of generating traffic and congestion patterns by following individual synthetic travelers through their daily or weekly activity programme. It has since then evolved from a collection of stand-alone C++ programs to an integrated Java-based framework which is publicly hosted, open-source available, automatically regression tested. It is currently used by about 40 groups throughout the world. This book takes stock of the current status. The first part of the book gives an introduction to the most important concepts, with the intention of enabling a potential user to set up and run basic simulations. The second part of the book describes how the basic functionality can be extended, for example by adding schedule-based public transit, electric or autonomous cars, paratransit, or within-day replanning. For each extension, the text provides pointers to the additional documentation and to the code base. It is also discussed how people with appropriate Java programming skills can write their own extensions, and plug them into the MATSim core. The project has started from the basic idea that traffic is a consequence of human behavior, and thus humans and their behavior should be the starting point of all modelling, and with the intuition that when simulations with 100 million particles are possible in computational physics, then behavior-oriented simulations with 10 million travelers should be possible in travel behavior research. The initial implementations thus combined concepts from computational physics and complex adaptive systems with concepts from travel behavior research. The third part of the book looks at theoretical concepts that are able to describe important aspects of the simulation system; for example, under certain conditions the code becomes a Monte Carlo engine sampling from a discrete choice model. Another important aspect is the interpretation of the MATSim score as utility in the microeconomic sense, opening up a connection to benefit cost analysis. Finally, the book collects use cases as they have been undertaken with MATSim. All current users of MATSim were invited to submit their work, and many followed with sometimes crisp and short and sometimes longer contributions, always with pointers to additional references. We hope that the book will become an invitation to explore, to build and to extend agent-based modeling of travel behavior from the stable and well tested core of MATSim documented here.

Learning-Based Control

Learning-Based Control
Title Learning-Based Control PDF eBook
Author Zhong-Ping Jiang
Publisher Now Publishers
Pages 122
Release 2020-12-07
Genre Technology & Engineering
ISBN 9781680837520

Download Learning-Based Control Book in PDF, Epub and Kindle

The recent success of Reinforcement Learning and related methods can be attributed to several key factors. First, it is driven by reward signals obtained through the interaction with the environment. Second, it is closely related to the human learning behavior. Third, it has a solid mathematical foundation. Nonetheless, conventional Reinforcement Learning theory exhibits some shortcomings particularly in a continuous environment or in considering the stability and robustness of the controlled process. In this monograph, the authors build on Reinforcement Learning to present a learning-based approach for controlling dynamical systems from real-time data and review some major developments in this relatively young field. In doing so the authors develop a framework for learning-based control theory that shows how to learn directly suboptimal controllers from input-output data. There are three main challenges on the development of learning-based control. First, there is a need to generalize existing recursive methods. Second, as a fundamental difference between learning-based control and Reinforcement Learning, stability and robustness are important issues that must be addressed for the safety-critical engineering systems such as self-driving cars. Third, data efficiency of Reinforcement Learning algorithms need be addressed for safety-critical engineering systems. This monograph provides the reader with an accessible primer on a new direction in control theory still in its infancy, namely Learning-Based Control Theory, that is closely tied to the literature of safe Reinforcement Learning and Adaptive Dynamic Programming.