Synthesis of Feedback Systems

Synthesis of Feedback Systems
Title Synthesis of Feedback Systems PDF eBook
Author Isaac M. Horowitz
Publisher
Pages 748
Release 1963
Genre Technology & Engineering
ISBN

Download Synthesis of Feedback Systems Book in PDF, Epub and Kindle

Synthesis of Feedback Systems

Synthesis of Feedback Systems
Title Synthesis of Feedback Systems PDF eBook
Author Isaac M. Horowitz
Publisher Elsevier
Pages 741
Release 2013-10-22
Genre Technology & Engineering
ISBN 1483267709

Download Synthesis of Feedback Systems Book in PDF, Epub and Kindle

Synthesis of Feedback Systems presents the feedback theory which exists in various feedback problems. This book provides techniques for the analysis and solution of these problems. The text begins with an introduction to feedback theory and exposition of problems of plant identification, representation, and analysis. Subsequent chapters are devoted to the application of the feedback point of view to any system; the principal useful properties of feedback; the feedback control system synthesis techniques; and the class of two degree-of-freedom feedback configurations and synthesis procedures appropriate for such configurations. The final chapter considers how to translate specifications from their typical original formulation, to the language appropriate for detailed design. The book is intended for engineers and graduate students of engineering design.

Feedback Systems

Feedback Systems
Title Feedback Systems PDF eBook
Author Karl Johan Åström
Publisher Princeton University Press
Pages
Release 2021-02-02
Genre Technology & Engineering
ISBN 069121347X

Download Feedback Systems Book in PDF, Epub and Kindle

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Control System Synthesis

Control System Synthesis
Title Control System Synthesis PDF eBook
Author Mathukumalli Vidyasagar
Publisher Morgan & Claypool Publishers
Pages 186
Release 2011-06-01
Genre Technology & Engineering
ISBN 1608456625

Download Control System Synthesis Book in PDF, Epub and Kindle

This book introduces the so-called "stable factorization approach" to the synthesis of feedback controllers for linear control systems. The key to this approach is to view the multi-input, multi-output (MIMO) plant for which one wishes to design a controller as a matrix over the fraction field F associated with a commutative ring with identity, denoted by R, which also has no divisors of zero. In this setting, the set of single-input, single-output (SISO) stable control systems is precisely the ring R, while the set of stable MIMO control systems is the set of matrices whose elements all belong to R. The set of unstable, meaning not necessarily stable, control systems is then taken to be the field of fractions F associated with R in the SISO case, and the set of matrices with elements in F in the MIMO case. The central notion introduced in the book is that, in most situations of practical interest, every matrix P whose elements belong to F can be "factored" as a "ratio" of two matrices N,D whose elements belong to R, in such a way that N,D are coprime. In the familiar case where the ring R corresponds to the set of bounded-input, bounded-output (BIBO)-stable rational transfer functions, coprimeness is equivalent to two functions not having any common zeros in the closed right half-plane including infinity. However, the notion of coprimeness extends readily to discrete-time systems, distributed-parameter systems in both the continuous- as well as discrete-time domains, and to multi-dimensional systems. Thus the stable factorization approach enables one to capture all these situations within a common framework. The key result in the stable factorization approach is the parametrization of all controllers that stabilize a given plant. It is shown that the set of all stabilizing controllers can be parametrized by a single parameter R, whose elements all belong to R. Moreover, every transfer matrix in the closed-loop system is an affine function of the design parameter R. Thus problems of reliable stabilization, disturbance rejection, robust stabilization etc. can all be formulated in terms of choosing an appropriate R. This is a reprint of the book Control System Synthesis: A Factorization Approach originally published by M.I.T. Press in 1985.

Feedback Control Theory

Feedback Control Theory
Title Feedback Control Theory PDF eBook
Author John C. Doyle
Publisher Courier Corporation
Pages 264
Release 2013-04-09
Genre Technology & Engineering
ISBN 0486318338

Download Feedback Control Theory Book in PDF, Epub and Kindle

An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.

Feedback Control System Analysis and Synthesis

Feedback Control System Analysis and Synthesis
Title Feedback Control System Analysis and Synthesis PDF eBook
Author John Joachim D'Azzo
Publisher
Pages 860
Release 1966
Genre Technology & Engineering
ISBN

Download Feedback Control System Analysis and Synthesis Book in PDF, Epub and Kindle

Biomolecular Feedback Systems

Biomolecular Feedback Systems
Title Biomolecular Feedback Systems PDF eBook
Author Domitilla Del Vecchio
Publisher Princeton University Press
Pages 287
Release 2014-10-26
Genre Science
ISBN 1400850509

Download Biomolecular Feedback Systems Book in PDF, Epub and Kindle

This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu