Symplectic Topology and Floer Homology

Symplectic Topology and Floer Homology
Title Symplectic Topology and Floer Homology PDF eBook
Author Yong-Geun Oh
Publisher Cambridge University Press
Pages 471
Release 2015-08-27
Genre Mathematics
ISBN 1107109671

Download Symplectic Topology and Floer Homology Book in PDF, Epub and Kindle

The second part of a two-volume set offering a systematic explanation of symplectic topology. This volume provides a comprehensive introduction to Hamiltonian and Lagrangian Floer theory.

Symplectic Topology and Floer Homology: Volume 2, Floer Homology and its Applications

Symplectic Topology and Floer Homology: Volume 2, Floer Homology and its Applications
Title Symplectic Topology and Floer Homology: Volume 2, Floer Homology and its Applications PDF eBook
Author Yong-Geun Oh
Publisher Cambridge University Press
Pages 471
Release 2015-08-27
Genre Mathematics
ISBN 1316381390

Download Symplectic Topology and Floer Homology: Volume 2, Floer Homology and its Applications Book in PDF, Epub and Kindle

Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory, including many examples of their applications to various problems in symplectic topology. The first volume covered the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.

Symplectic Topology and Floer Homology: Volume 1, Symplectic Geometry and Pseudoholomorphic Curves

Symplectic Topology and Floer Homology: Volume 1, Symplectic Geometry and Pseudoholomorphic Curves
Title Symplectic Topology and Floer Homology: Volume 1, Symplectic Geometry and Pseudoholomorphic Curves PDF eBook
Author Yong-Geun Oh
Publisher Cambridge University Press
Pages 421
Release 2015-08-27
Genre Mathematics
ISBN 1316381145

Download Symplectic Topology and Floer Homology: Volume 1, Symplectic Geometry and Pseudoholomorphic Curves Book in PDF, Epub and Kindle

Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 1 covers the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. One novel aspect of this treatment is the uniform treatment of both closed and open cases and a complete proof of the boundary regularity theorem of weak solutions of pseudo-holomorphic curves with totally real boundary conditions. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.

Morse Theory and Floer Homology

Morse Theory and Floer Homology
Title Morse Theory and Floer Homology PDF eBook
Author Michèle Audin
Publisher Springer Science & Business Media
Pages 595
Release 2013-11-29
Genre Mathematics
ISBN 1447154967

Download Morse Theory and Floer Homology Book in PDF, Epub and Kindle

This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold. The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications. Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part. The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis. The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students.

J-holomorphic Curves and Symplectic Topology

J-holomorphic Curves and Symplectic Topology
Title J-holomorphic Curves and Symplectic Topology PDF eBook
Author Dusa McDuff
Publisher American Mathematical Soc.
Pages 744
Release 2012
Genre Mathematics
ISBN 0821887467

Download J-holomorphic Curves and Symplectic Topology Book in PDF, Epub and Kindle

The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.

Symplectic Geometry and Topology

Symplectic Geometry and Topology
Title Symplectic Geometry and Topology PDF eBook
Author Yakov Eliashberg
Publisher American Mathematical Soc.
Pages 452
Release 2004
Genre Mathematics
ISBN 9780821886892

Download Symplectic Geometry and Topology Book in PDF, Epub and Kindle

Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Contact and Symplectic Topology

Contact and Symplectic Topology
Title Contact and Symplectic Topology PDF eBook
Author Frédéric Bourgeois
Publisher Springer Science & Business Media
Pages 538
Release 2014-03-10
Genre Science
ISBN 3319020366

Download Contact and Symplectic Topology Book in PDF, Epub and Kindle

Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.