Symmetry for Elliptic PDEs
Title | Symmetry for Elliptic PDEs PDF eBook |
Author | Alberto Farina |
Publisher | American Mathematical Soc. |
Pages | 152 |
Release | 2010 |
Genre | Mathematics |
ISBN | 0821848046 |
Contains contributions from the INdAM School on Symmetry for Elliptic PDEs, which marked ""30 years after a conjecture of De Giorgi, and related problems"" and provided an opportunity for experts to discuss the state of the art and open questions on the subject.
An Introduction to Maximum Principles and Symmetry in Elliptic Problems
Title | An Introduction to Maximum Principles and Symmetry in Elliptic Problems PDF eBook |
Author | L. E. Fraenkel |
Publisher | Cambridge University Press |
Pages | 352 |
Release | 2000-02-25 |
Genre | Mathematics |
ISBN | 0521461952 |
Advanced text, originally published in 2000, on differential equations, with plentiful supply of exercises all with detailed hints.
Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane
Title | Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane PDF eBook |
Author | Kari Astala |
Publisher | Princeton University Press |
Pages | 696 |
Release | 2008-12-29 |
Genre | Mathematics |
ISBN | 1400830117 |
This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.
Symmetry Methods for Differential Equations
Title | Symmetry Methods for Differential Equations PDF eBook |
Author | Peter Ellsworth Hydon |
Publisher | Cambridge University Press |
Pages | 230 |
Release | 2000-01-28 |
Genre | Mathematics |
ISBN | 9780521497862 |
This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.
Partial Differential Equations of Elliptic Type
Title | Partial Differential Equations of Elliptic Type PDF eBook |
Author | C. Miranda |
Publisher | Springer Science & Business Media |
Pages | 384 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642877737 |
In the theory of partial differential equations, the study of elliptic equations occupies a preeminent position, both because of the importance which it assumes for various questions in mathematical physics, and because of the completeness of the results obtained up to the present time. In spite of this, even in the more classical treatises on analysis the theory of elliptic equations has been considered and illustrated only from particular points of view, while the only expositions of the whole theory, the extremely valuable ones by LICHTENSTEIN and AscoLI, have the charac ter of encyclopedia articles and date back to many years ago. Consequently it seemed to me that it would be of some interest to try to give an up-to-date picture of the present state of research in this area in a monograph which, without attaining the dimensions of a treatise, would nevertheless be sufficiently extensive to allow the expo sition, in some cases in summary form, of the various techniques used in the study of these equations.
Elliptic Partial Differential Equations
Title | Elliptic Partial Differential Equations PDF eBook |
Author | Qing Han |
Publisher | American Mathematical Soc. |
Pages | 161 |
Release | 2011 |
Genre | Mathematics |
ISBN | 0821853139 |
This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.
Recent Trends in Operator Theory and Partial Differential Equations
Title | Recent Trends in Operator Theory and Partial Differential Equations PDF eBook |
Author | Vladimir Maz'ya |
Publisher | Birkhäuser |
Pages | 313 |
Release | 2017-02-23 |
Genre | Mathematics |
ISBN | 3319470795 |
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.