Surveys in Representation Theory of Algebras

Surveys in Representation Theory of Algebras
Title Surveys in Representation Theory of Algebras PDF eBook
Author Alex Martsinkovsky
Publisher American Mathematical Soc.
Pages 216
Release 2018-09-12
Genre Mathematics
ISBN 1470436795

Download Surveys in Representation Theory of Algebras Book in PDF, Epub and Kindle

This volume contains selected expository lectures delivered at the annual Maurice Auslander Distinguished Lectures and International Conference over the last several years. Reflecting the diverse landscape of modern representation theory of algebras, the selected articles include: a quick introduction to silting modules; a survey on the first decade of co-t-structures in triangulated categories; a functorial approach to the notion of module; a representation-theoretic approach to recollements in abelian categories; new examples of applications of relative homological algebra; connections between Coxeter groups and quiver representations; and recent progress on limits of approximation theory.

Representation Theory

Representation Theory
Title Representation Theory PDF eBook
Author Alexander Zimmermann
Publisher Springer
Pages 720
Release 2014-08-15
Genre Mathematics
ISBN 3319079689

Download Representation Theory Book in PDF, Epub and Kindle

Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.

Representation Theory of Finite Groups: Algebra and Arithmetic

Representation Theory of Finite Groups: Algebra and Arithmetic
Title Representation Theory of Finite Groups: Algebra and Arithmetic PDF eBook
Author Steven H. Weintraub
Publisher American Mathematical Soc.
Pages 226
Release 2003
Genre Mathematics
ISBN 0821832220

Download Representation Theory of Finite Groups: Algebra and Arithmetic Book in PDF, Epub and Kindle

``We explore widely in the valley of ordinary representations, and we take the reader over the mountain pass leading to the valley of modular representations, to a point from which (s)he can survey this valley, but we do not attempt to widely explore it. We hope the reader will be sufficiently fascinated by the scenery to further explore both valleys on his/her own.'' --from the Preface Representation theory plays important roles in geometry, algebra, analysis, and mathematical physics. In particular, representation theory has been one of the great tools in the study and classification of finite groups. There are some beautiful results that come from representation theory: Frobenius's Theorem, Burnside's Theorem, Artin's Theorem, Brauer's Theorem--all of which are covered in this textbook. Some seem uninspiring at first, but prove to be quite useful. Others are clearly deep from the outset. And when a group (finite or otherwise) acts on something else (as a set of symmetries, for example), one ends up with a natural representation of the group. This book is an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. The approach is to develop the requisite algebra in reasonable generality and then to specialize it to the case of group representations. Methods and results particular to group representations, such as characters and induced representations, are developed in depth. Arithmetic comes into play when considering the field of definition of a representation, especially for subfields of the complex numbers. The book has an extensive development of the semisimple case, where the characteristic of the field is zero or is prime to the order of the group, and builds the foundations of the modular case, where the characteristic of the field divides the order of the group. The book assumes only the material of a standard graduate course in algebra. It is suitable as a text for a year-long graduate course. The subject is of interest to students of algebra, number theory and algebraic geometry. The systematic treatment presented here makes the book also valuable as a reference.

Advances in Representation Theory of Algebras

Advances in Representation Theory of Algebras
Title Advances in Representation Theory of Algebras PDF eBook
Author David J. Benson
Publisher European Mathematical Society
Pages 1
Release 2013
Genre Mathematics
ISBN 3037191252

Download Advances in Representation Theory of Algebras Book in PDF, Epub and Kindle

This volume presents a collection of articles devoted to representations of algebras and related topics. Dististinguished experts in this field presented their work at the International Conference on Representations of Algebras, which took place in Bielefeld in 2012. Many of the expository surveys are included here. Researchers of representation theory will find in this volume interesting and stimulating contributions to the development of the subject.

Representations of Algebraic Groups

Representations of Algebraic Groups
Title Representations of Algebraic Groups PDF eBook
Author Jens Carsten Jantzen
Publisher American Mathematical Soc.
Pages 594
Release 2003
Genre Mathematics
ISBN 082184377X

Download Representations of Algebraic Groups Book in PDF, Epub and Kindle

Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.

Integral Representations

Integral Representations
Title Integral Representations PDF eBook
Author I. Reiner
Publisher Springer
Pages 284
Release 2006-11-15
Genre Mathematics
ISBN 3540350071

Download Integral Representations Book in PDF, Epub and Kindle

Introduction to Representation Theory

Introduction to Representation Theory
Title Introduction to Representation Theory PDF eBook
Author Pavel I. Etingof
Publisher American Mathematical Soc.
Pages 240
Release 2011
Genre Mathematics
ISBN 0821853511

Download Introduction to Representation Theory Book in PDF, Epub and Kindle

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.