Surface Models for Geosciences

Surface Models for Geosciences
Title Surface Models for Geosciences PDF eBook
Author Kateřina Růžičková
Publisher Springer
Pages 316
Release 2015-05-27
Genre Science
ISBN 3319184075

Download Surface Models for Geosciences Book in PDF, Epub and Kindle

The aim of the conference is to present and discuss new methods, issues and challenges encountered in all parts of the complex process of gradual development and application of digital surface models. This process covers data capture, data generation, storage, model creation, validation, manipulation, utilization and visualization. Each stage requires suitable methods and involves issues that may substantially decrease the value of the model. Furthermore, the conference provides a platform to discuss the requirements, features and research approaches for 3D modeling, continuous field modeling and other geoscience applications. The conference covers the following topics: - LIDAR for elevation data - Radar interferometry for elevation data - Surface model creation - Surface model statistics - Surface model storage (including data formats, standardization, database) - Feature extraction - Analysis of surface models - Surface models for hydrology, meteorology, climatology - Surface models for signal spreading - Surface models for geology (structural, mining) - Surface models for environmental science - Surface models for visibility studies - Surface models for urban geography - Surface models for human geography - Uncertainty of surface models and digital terrain analysis - Surface model visual enhancement and rendering

Quantitative Modeling of Earth Surface Processes

Quantitative Modeling of Earth Surface Processes
Title Quantitative Modeling of Earth Surface Processes PDF eBook
Author Jon D. Pelletier
Publisher Cambridge University Press
Pages 304
Release 2008-08-07
Genre Science
ISBN 9780521855976

Download Quantitative Modeling of Earth Surface Processes Book in PDF, Epub and Kindle

This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.

Self-Potential Method: Theoretical Modeling and Applications in Geosciences

Self-Potential Method: Theoretical Modeling and Applications in Geosciences
Title Self-Potential Method: Theoretical Modeling and Applications in Geosciences PDF eBook
Author Arkoprovo Biswas
Publisher Springer Nature
Pages 322
Release 2021-08-21
Genre Science
ISBN 3030793338

Download Self-Potential Method: Theoretical Modeling and Applications in Geosciences Book in PDF, Epub and Kindle

The book deals primarily with the aspects of advances in Self-Potential geophysical data modeling, different interpretation techniques, new ideas and an integrated study to delineate the subsurface structures associated with exploration, contamination, buried paleochannels, archaeological investigations, glaciology, geomorphology, subsurface mapping and also in hydrocarbon exploration.The book is specifically aimed with the state-of-art information regarding research advances and new development in these areas of study, coupled to extensive modelling and field investigations obtained from around the world. It is extremely enlightening for the students, research workers, scientists, faculty members in Applied Geophysics, Near Surface Geophysics, Potential field, Electrical and Electromagnetic methods, Mathematical Modeling Techniques in Earth Sciences, as well as Environmental and other practical problems associated with Earth Sciences.

The NURBS Book

The NURBS Book
Title The NURBS Book PDF eBook
Author Les Piegl
Publisher Springer Science & Business Media
Pages 650
Release 2012-12-06
Genre Computers
ISBN 3642592236

Download The NURBS Book Book in PDF, Epub and Kindle

Until recently B-spline curves and surfaces (NURBS) were principally of interest to the computer aided design community, where they have become the standard for curve and surface description. Today we are seeing expanded use of NURBS in modeling objects for the visual arts, including the film and entertainment industries, art, and sculpture. NURBS are now also being used for modeling scenes for virtual reality applications. These applications are expected to increase. Consequently, it is quite appropriate for The.N'URBS Book to be part of the Monographs in Visual Communication Series. B-spline curves and surfaces have been an enduring element throughout my pro fessional life. The first edition of Mathematical Elements for Computer Graphics, published in 1972, was the first computer aided design/interactive computer graph ics textbook to contain material on B-splines. That material was obtained through the good graces of Bill Gordon and Louie Knapp while they were at Syracuse University. A paper of mine, presented during the Summer of 1977 at a Society of Naval Architects and Marine Engineers meeting on computer aided ship surface design, was arguably the first to examine the use of B-spline curves for ship design. For many, B-splines, rational B-splines, and NURBS have been a bit mysterious.

Structure from Motion in the Geosciences

Structure from Motion in the Geosciences
Title Structure from Motion in the Geosciences PDF eBook
Author Jonathan L. Carrivick
Publisher John Wiley & Sons
Pages 208
Release 2016-07-15
Genre Technology & Engineering
ISBN 1118895827

Download Structure from Motion in the Geosciences Book in PDF, Epub and Kindle

Structure from Motion with Multi View Stereo provides hyperscale landform models using images acquired from standard compact cameras and a network of ground control points. The technique is not limited in temporal frequency and can provide point cloud data comparable in density and accuracy to those generated by terrestrial and airborne laser scanning at a fraction of the cost. It therefore offers exciting opportunities to characterise surface topography in unprecedented detail and, with multi-temporal data, to detect elevation, position and volumetric changes that are symptomatic of earth surface processes. This book firstly places Structure from Motion in the context of other digital surveying methods and details the Structure from Motion workflow including available software packages and assessments of uncertainty and accuracy. It then critically reviews current usage of Structure from Motion in the geosciences, provides a synthesis of recent validation studies and looks to the future by highlighting opportunities arising from developments in allied disciplines. This book will appeal to academics, students and industry professionals because it balances technical knowledge of the Structure from Motion workflow with practical guidelines for image acquisition, image processing and data quality assessment and includes case studies that have been contributed by experts from around the world.

Elevation Models for Geoscience

Elevation Models for Geoscience
Title Elevation Models for Geoscience PDF eBook
Author Cory Fleming
Publisher Geological Society of London
Pages 158
Release 2010
Genre Computers
ISBN 9781862393134

Download Elevation Models for Geoscience Book in PDF, Epub and Kindle

Elevation data are a critical element in most geoscience applications. From geological mapping to modelling Earth systems and processes geologists need to understand the shape of the Earth's surface. Vast amounts of digital elevation data exist, from large-scale global to smaller scale regional datasets, and many datasets have been merged to improve scale and accuracy. For each application, decisions are made on which elevation data to use driven by cost, resolution and accuracy. This publication shows the current status of available digital elevation data and illustrates the key applications. The types of data assessed include: ASTER stereo satellite imagery, Shuttle Radar Topographic Mapping data, airborne laser and radar such as NEXTMap, and Multibeam Bathymetry. Applications covered include: glacial deposits, landslides, coastal erosion and other geological hazards. Technical issues discussed include: accuracy analysis, derived product creation, software comparisons and copyright considerations. This volume is a comprehensive look at elevation models for geoscience.

Mathematical Modeling of Earth's Dynamical Systems

Mathematical Modeling of Earth's Dynamical Systems
Title Mathematical Modeling of Earth's Dynamical Systems PDF eBook
Author Rudy Slingerland
Publisher Princeton University Press
Pages 246
Release 2011-03-28
Genre Science
ISBN 1400839114

Download Mathematical Modeling of Earth's Dynamical Systems Book in PDF, Epub and Kindle

A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html