Hybrid Systems, Optimal Control and Hybrid Vehicles
Title | Hybrid Systems, Optimal Control and Hybrid Vehicles PDF eBook |
Author | Thomas J. Böhme |
Publisher | Springer |
Pages | 549 |
Release | 2017-02-01 |
Genre | Technology & Engineering |
ISBN | 3319513176 |
This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering problems of growing complexity in the field of hybrid vehicles. Important topics of real relevance rarely found in text books and research publications—switching costs, sensitivity of discrete decisions and there impact on fuel savings, etc.—are discussed and supported with practical applications. These demonstrate the contribution of optimal hybrid control in predictive energy management, advanced powertrain calibration, and the optimization of vehicle configuration with respect to fuel economy, lowest emissions and smoothest drivability. Numerical issues such as computing resources, simplifications and stability are treated to enable readers to assess such complex systems. To help industrial engineers and managers with project decision-making, solutions for many important problems in hybrid vehicle control are provided in terms of requirements, benefits and risks.
Hybrid Electric Vehicles
Title | Hybrid Electric Vehicles PDF eBook |
Author | Simona Onori |
Publisher | Springer |
Pages | 121 |
Release | 2015-12-16 |
Genre | Technology & Engineering |
ISBN | 1447167813 |
This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.
Vehicle Propulsion Systems
Title | Vehicle Propulsion Systems PDF eBook |
Author | Lino Guzzella |
Publisher | Springer Science & Business Media |
Pages | 345 |
Release | 2007-09-21 |
Genre | Technology & Engineering |
ISBN | 3540746927 |
The authors of this text have written a comprehensive introduction to the modeling and optimization problems encountered when designing new propulsion systems for passenger cars. It is intended for persons interested in the analysis and optimization of vehicle propulsion systems. Its focus is on the control-oriented mathematical description of the physical processes and on the model-based optimization of the system structure and of the supervisory control algorithms.
Advanced Hybrid Powertrains for Commercial Vehicles
Title | Advanced Hybrid Powertrains for Commercial Vehicles PDF eBook |
Author | Haoran Hu |
Publisher | SAE International |
Pages | 448 |
Release | 2021-04-14 |
Genre | Technology & Engineering |
ISBN | 1468601377 |
Powertrains for commercial vehicles have evolved since the late nineteenth-century invention of the ICE. In the revised second edition of Advanced Hybrid Powertrains for Commercial Vehicles, the authors explore commercial powertrains through history from the ICE through the introduction of the hybrid powertrain in commercial vehicles. Readers are given an understanding of the ICE as well as the classification of commercial vehicle hybrid powertrains, the variety of energy storage systems, fuel-cell hybrid powertrain systems, and commercial vehicle electrification. The authors review the legislation of vehicle emissions and the regulation necessary to promote the production of fuel-efficient vehicles.
Material and Manufacturing Technology
Title | Material and Manufacturing Technology PDF eBook |
Author | Xie Yi |
Publisher | Trans Tech Publications Ltd |
Pages | 1493 |
Release | 2010-08-11 |
Genre | Technology & Engineering |
ISBN | 3038134007 |
Selected, peer reviewed papers from the 2010 International Conference on Material and Manufacturing Technology (ICMMT 2010) held on September 17-19, 2010 in Chongqing, China
Power Transmissions
Title | Power Transmissions PDF eBook |
Author | Datong Qin |
Publisher | CRC Press |
Pages | 1081 |
Release | 2016-11-10 |
Genre | Technology & Engineering |
ISBN | 131538681X |
This book presents papers from the International Conference on Power Transmissions 2016, held in Chongqing, China, 27th-30th October 2016. The main objective of this conference is to provide a forum for the most recent advances, addressing the challenges in modern mechanical transmissions. The conference proceedings address all aspects of gear and power transmission technology and a range of applications. The presented papers are catalogued into three main tracks, including design, simulation and testing, materials and manufacturing, and industrial applications. The design, simulation and testing track covers topics such as new methods and designs for all types of transmissions, modelling and simulation of power transmissions, strength, fatigue, dynamics and reliability of power transmissions, lubrication and sealing technologies and theories, and fault diagnosis of power transmissions. In the materials and manufacturing track, topics include new materials and heat treatment of power transmissions, new manufacturing technologies of power transmissions, improved tools to predict future demands on production systems, new technologies for ecologically sustainable productions and those which preserve natural resources, and measuring technologies of power transmissions. The proceedings also cover the novel industrial applications of power transmissions in marine, aerospace and railway contexts, wind turbines, the automotive industry, construction machinery, and robots.
Advanced Hierarchical Control and Stability Analysis of DC Microgrids
Title | Advanced Hierarchical Control and Stability Analysis of DC Microgrids PDF eBook |
Author | Andrei-Constantin Braitor |
Publisher | Springer Nature |
Pages | 185 |
Release | 2022-02-20 |
Genre | Technology & Engineering |
ISBN | 3030954153 |
This book introduces several novel contributions into the current literature. Firstly, given that microgrid topologies are paramount in theoretical analysis, the author has proposed a rigorous method of computing the network’s admittance matrix and developed to facilitate the stability analysis of DC microgrids supplying nonlinear loads. This unique approach enabled the factorisation of the admittance matrix in a particular way that facilitates a rigorous theoretical analysis for deriving the stability conditions. Secondly, author has proposed a unified control structure at the primary control layer that maintains the widely accepted droop-based approaches and additionally ensures crucial current- and voltage-limiting properties, thus offering an inherent protection to distributed energy resources. He has formalised the control design proofs using Lyapunov methods and nonlinear ultimate boundedness theory, for both parallel and meshed microgrid configurations. Moreover, he has developed a distributed secondary controller using a diffusive coupling communication network, on top of the primary control, to achieve voltage restoration and improve the power sharing. In this way, the author has formulated the complete hierarchical control scheme. In this high-order nonlinear setting, he has analytically proven closed-loop system stability of the overall system, for the first time, using two-time scale approaches and singular perturbation theory, by formulating rigorous theorems that introduce straightforward conditions that guide the system and control design and demonstrate system stability at the desired equilibrium point. In addition, the author has provided a straightforward algorithm for simple testing of system stability and explored from a graphical perspective by giving an interpretation to the effect of the nonlinear load onto the system performance and stability.