Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties

Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties
Title Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties PDF eBook
Author Feyzi Başar
Publisher CRC Press
Pages 155
Release 2020-02-25
Genre Mathematics
ISBN 1351166905

Download Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties Book in PDF, Epub and Kindle

The aim of Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties is to discuss primarily about different kinds of summable spaces, compute their duals and then characterize several matrix classes transforming one summable space into other. The book also discusses several geometric properties of summable spaces, as well as dealing with the construction of summable spaces using Orlicz functions, and explores several structural properties of such spaces. Each chapter contains a conclusion section highlighting the importance of results, and points the reader in the direction of possible new ideas for further study. Features Suitable for graduate schools, graduate students, researchers and faculty, and could be used as a key text for special Analysis seminars Investigates different types of summable spaces and computes their duals Characterizes several matrix classes transforming one summable space into other Discusses several geometric properties of summable spaces Examines several possible generalizations of Orlicz sequence spaces

Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties

Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties
Title Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties PDF eBook
Author Feyzi Başar
Publisher CRC Press
Pages 173
Release 2020-02-04
Genre Mathematics
ISBN 1351166913

Download Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties Book in PDF, Epub and Kindle

The aim of Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties is to discuss primarily about different kinds of summable spaces, compute their duals and then characterize several matrix classes transforming one summable space into other. The book also discusses several geometric properties of summable spaces, as well as dealing with the construction of summable spaces using Orlicz functions, and explores several structural properties of such spaces. Each chapter contains a conclusion section highlighting the importance of results, and points the reader in the direction of possible new ideas for further study. Features Suitable for graduate schools, graduate students, researchers and faculty, and could be used as a key text for special Analysis seminars Investigates different types of summable spaces and computes their duals Characterizes several matrix classes transforming one summable space into other Discusses several geometric properties of summable spaces Examines several possible generalizations of Orlicz sequence spaces

Summability Theory and Its Applications

Summability Theory and Its Applications
Title Summability Theory and Its Applications PDF eBook
Author Feyzi Başar
Publisher CRC Press
Pages 521
Release 2022-06-27
Genre Mathematics
ISBN 1000599140

Download Summability Theory and Its Applications Book in PDF, Epub and Kindle

Summability Theory and Its Applications explains various aspects of summability and demonstrates its applications in a rigorous and coherent manner. The content can readily serve as a reference or as a useful series of lecture notes on the subject. This substantially revised new edition includes brand new material across several chapters as well as several corrections, including: the addition of the domain of Cesaro matrix C(m) of order m in the classical sequence spaces to Chapter 4; and introducing the domain of four-dimensional binomial matrix in the spaces of bounded, convergent in the Pringsheim's sense, both convergent in the Pringsheim's sense and bounded, and regularly convergent double sequences, in Chapter 7. Features Investigates different types of summable spaces and computes their dual Suitable for graduate students and researchers with a (special) interest in spaces of single and double sequences, matrix transformations and domains of triangle matrices Can serve as a reference or as supplementary reading in a computational physics course, or as a key text for special Analysis seminars.

Banach Limit and Applications

Banach Limit and Applications
Title Banach Limit and Applications PDF eBook
Author Gokulananda Das
Publisher CRC Press
Pages 182
Release 2021-10-25
Genre Mathematics
ISBN 1000467627

Download Banach Limit and Applications Book in PDF, Epub and Kindle

Banach Limits and Applications provides all the results in the area of Banach limit, its extensions, generalizations and applications to various fields in one go (as far as possible). All the results in this field, after Banach introduced this concept in the year 1932 , are scattered till now. Sublinear functionals generating and dominating Banach Limit, unique Branch Limit (almost convergence), invariant means and invariant limits, absolute and strong almost convergence, applications to ergodicity, law of large number, Fourier series, uniform distribution of sequences, uniform density, core theorems, functional Banach limits are discussed in this book. Discovery of functional analysis such as Hahn-Banach theorem, Banach-Steinhaus Theorem helped the researchers to develop a modern, rich and unified theory of sequence spaces by enveloping classical summability theory via matrix transformation and the topics related to sequence spaces arose from the concept of Banach limit are presented in this book. The unique features of this book are as follows: It contains all the results in this area at one place which are scattered till now. The book is first of its kinds in the sense that there is no other competitive book . The contents of this monograph did not appear in any book form before. The audience of this book are the researchers in this area, the Ph.D. and advanced Masters students. The book is suitable for one or two semester course work for Ph. D. students, M.S. Students of North America and Europe, M. Phil and Masters Students of India.

Morrey Spaces

Morrey Spaces
Title Morrey Spaces PDF eBook
Author Yoshihiro Sawano
Publisher CRC Press
Pages 429
Release 2020-09-16
Genre Mathematics
ISBN 1000064050

Download Morrey Spaces Book in PDF, Epub and Kindle

Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding

Spectral Geometry of Partial Differential Operators

Spectral Geometry of Partial Differential Operators
Title Spectral Geometry of Partial Differential Operators PDF eBook
Author Michael Ruzhansky
Publisher CRC Press
Pages 366
Release 2020-02-07
Genre Mathematics
ISBN 0429780575

Download Spectral Geometry of Partial Differential Operators Book in PDF, Epub and Kindle

The aim of Spectral Geometry of Partial Differential Operators is to provide a basic and self-contained introduction to the ideas underpinning spectral geometric inequalities arising in the theory of partial differential equations. Historically, one of the first inequalities of the spectral geometry was the minimization problem of the first eigenvalue of the Dirichlet Laplacian. Nowadays, this type of inequalities of spectral geometry have expanded to many other cases with number of applications in physics and other sciences. The main reason why the results are useful, beyond the intrinsic interest of geometric extremum problems, is that they produce a priori bounds for spectral invariants of (partial differential) operators on arbitrary domains. Features: Collects the ideas underpinning the inequalities of the spectral geometry, in both self-adjoint and non-self-adjoint operator theory, in a way accessible by anyone with a basic level of understanding of linear differential operators Aimed at theoretical as well as applied mathematicians, from a wide range of scientific fields, including acoustics, astronomy, MEMS, and other physical sciences Provides a step-by-step guide to the techniques of non-self-adjoint partial differential operators, and for the applications of such methods. Provides a self-contained coverage of the traditional and modern theories of linear partial differential operators, and does not require a previous background in operator theory.

Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations

Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations
Title Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations PDF eBook
Author Luca Lorenzi
Publisher CRC Press
Pages 503
Release 2021-01-05
Genre Mathematics
ISBN 0429553196

Download Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations Book in PDF, Epub and Kindle

Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations aims to propose a unified approach to elliptic and parabolic equations with bounded and smooth coefficients. The book will highlight the connections between these equations and the theory of semigroups of operators, while demonstrating how the theory of semigroups represents a powerful tool to analyze general parabolic equations. Features Useful for students and researchers as an introduction to the field of partial differential equations of elliptic and parabolic types Introduces the reader to the theory of operator semigroups as a tool for the analysis of partial differential equations