Studies in Nonlinear and Long Memory Time Series Econometrics
Title | Studies in Nonlinear and Long Memory Time Series Econometrics PDF eBook |
Author | Rehim Kiliç |
Publisher | |
Pages | 536 |
Release | 2002 |
Genre | Autoregression (Statistics) |
ISBN |
Time Series with Long Memory
Title | Time Series with Long Memory PDF eBook |
Author | Peter M. Robinson |
Publisher | Advanced Texts in Econometrics |
Pages | 396 |
Release | 2003 |
Genre | Business & Economics |
ISBN | 9780199257300 |
Long memory time series are characterized by a strong dependence between distant events.
Modeling Financial Time Series with S-PLUS
Title | Modeling Financial Time Series with S-PLUS PDF eBook |
Author | Eric Zivot |
Publisher | Springer Science & Business Media |
Pages | 632 |
Release | 2013-11-11 |
Genre | Business & Economics |
ISBN | 0387217630 |
The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.
Time Series Analysis with Long Memory in View
Title | Time Series Analysis with Long Memory in View PDF eBook |
Author | Uwe Hassler |
Publisher | John Wiley & Sons |
Pages | 361 |
Release | 2018-09-07 |
Genre | Mathematics |
ISBN | 1119470420 |
Provides a simple exposition of the basic time series material, and insights into underlying technical aspects and methods of proof Long memory time series are characterized by a strong dependence between distant events. This book introduces readers to the theory and foundations of univariate time series analysis with a focus on long memory and fractional integration, which are embedded into the general framework. It presents the general theory of time series, including some issues that are not treated in other books on time series, such as ergodicity, persistence versus memory, asymptotic properties of the periodogram, and Whittle estimation. Further chapters address the general functional central limit theory, parametric and semiparametric estimation of the long memory parameter, and locally optimal tests. Intuitive and easy to read, Time Series Analysis with Long Memory in View offers chapters that cover: Stationary Processes; Moving Averages and Linear Processes; Frequency Domain Analysis; Differencing and Integration; Fractionally Integrated Processes; Sample Means; Parametric Estimators; Semiparametric Estimators; and Testing. It also discusses further topics. This book: Offers beginning-of-chapter examples as well as end-of-chapter technical arguments and proofs Contains many new results on long memory processes which have not appeared in previous and existing textbooks Takes a basic mathematics (Calculus) approach to the topic of time series analysis with long memory Contains 25 illustrative figures as well as lists of notations and acronyms Time Series Analysis with Long Memory in View is an ideal text for first year PhD students, researchers, and practitioners in statistics, econometrics, and any application area that uses time series over a long period. It would also benefit researchers, undergraduates, and practitioners in those areas who require a rigorous introduction to time series analysis.
Nonlinear Time Series Analysis
Title | Nonlinear Time Series Analysis PDF eBook |
Author | Ruey S. Tsay |
Publisher | John Wiley & Sons |
Pages | 516 |
Release | 2018-09-13 |
Genre | Mathematics |
ISBN | 1119264065 |
A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Time Series Econometrics
Title | Time Series Econometrics PDF eBook |
Author | Pierre Perron |
Publisher | |
Pages | |
Release | 2018 |
Genre | Econometrics |
ISBN | 9789813237896 |
Part I. Unit roots and trend breaks -- Part II. Structural change
Long Memory in Economics
Title | Long Memory in Economics PDF eBook |
Author | Gilles Teyssière |
Publisher | Springer Science & Business Media |
Pages | 394 |
Release | 2006-09-22 |
Genre | Business & Economics |
ISBN | 3540346252 |
Assembles three different strands of long memory analysis: statistical literature on the properties of, and tests for, LRD processes; mathematical literature on the stochastic processes involved; and models from economic theory providing plausible micro foundations for the occurrence of long memory in economics.