Structured and Parameter-dependent Eigensolvers for Simulation-based Design of Resonant MEMS
Title | Structured and Parameter-dependent Eigensolvers for Simulation-based Design of Resonant MEMS PDF eBook |
Author | David Samuel Bindel |
Publisher | |
Pages | 402 |
Release | 2006 |
Genre | |
ISBN |
Efficient Evaluation of Damping in Resonant MEMS
Title | Efficient Evaluation of Damping in Resonant MEMS PDF eBook |
Author | Tsuyoshi Koyama |
Publisher | |
Pages | 652 |
Release | 2008 |
Genre | |
ISBN |
Dissertation Abstracts International
Title | Dissertation Abstracts International PDF eBook |
Author | |
Publisher | |
Pages | 1044 |
Release | 2007 |
Genre | Dissertations, Academic |
ISBN |
Model Order Reduction Techniques with Applications in Finite Element Analysis
Title | Model Order Reduction Techniques with Applications in Finite Element Analysis PDF eBook |
Author | Zu-Qing Qu |
Publisher | Springer Science & Business Media |
Pages | 379 |
Release | 2013-03-14 |
Genre | Mathematics |
ISBN | 1447138279 |
Despite the continued rapid advance in computing speed and memory the increase in the complexity of models used by engineers persists in outpacing them. Even where there is access to the latest hardware, simulations are often extremely computationally intensive and time-consuming when full-blown models are under consideration. The need to reduce the computational cost involved when dealing with high-order/many-degree-of-freedom models can be offset by adroit computation. In this light, model-reduction methods have become a major goal of simulation and modeling research. Model reduction can also ameliorate problems in the correlation of widely used finite-element analyses and test analysis models produced by excessive system complexity. Model Order Reduction Techniques explains and compares such methods focusing mainly on recent work in dynamic condensation techniques: - Compares the effectiveness of static, exact, dynamic, SEREP and iterative-dynamic condensation techniques in producing valid reduced-order models; - Shows how frequency shifting and the number of degrees of freedom affect the desirability and accuracy of using dynamic condensation; - Answers the challenges involved in dealing with undamped and non-classically damped models; - Requires little more than first-engineering-degree mathematics and highlights important points with instructive examples. Academics working in research on structural dynamics, MEMS, vibration, finite elements and other computational methods in mechanical, aerospace and structural engineering will find Model Order Reduction Techniques of great interest while it is also an excellent resource for researchers working on commercial finite-element-related software such as ANSYS and Nastran.
Acoustic Metamaterials and Phononic Crystals
Title | Acoustic Metamaterials and Phononic Crystals PDF eBook |
Author | Pierre A. Deymier |
Publisher | Springer Science & Business Media |
Pages | 388 |
Release | 2013-01-13 |
Genre | Technology & Engineering |
ISBN | 3642312322 |
This comprehensive book presents all aspects of acoustic metamaterials and phononic crystals. The emphasis is on acoustic wave propagation phenomena at interfaces such as refraction, especially unusual refractive properties and negative refraction. A thorough discussion of the mechanisms leading to such refractive phenomena includes local resonances in metamaterials and scattering in phononic crystals.
Quantum Computing
Title | Quantum Computing PDF eBook |
Author | National Academies of Sciences, Engineering, and Medicine |
Publisher | National Academies Press |
Pages | 273 |
Release | 2019-04-27 |
Genre | Computers |
ISBN | 030947969X |
Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.
Model Order Reduction: Theory, Research Aspects and Applications
Title | Model Order Reduction: Theory, Research Aspects and Applications PDF eBook |
Author | Wilhelmus H. Schilders |
Publisher | Springer Science & Business Media |
Pages | 471 |
Release | 2008-08-27 |
Genre | Mathematics |
ISBN | 3540788417 |
The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.