Structural Aspects in the Theory of Probability

Structural Aspects in the Theory of Probability
Title Structural Aspects in the Theory of Probability PDF eBook
Author Herbert Heyer
Publisher World Scientific
Pages 425
Release 2010
Genre Mathematics
ISBN 9814282480

Download Structural Aspects in the Theory of Probability Book in PDF, Epub and Kindle

The book is conceived as a text accompanying the traditional graduate courses on probability theory. An important feature of this enlarged version is the emphasis on algebraic-topological aspects leading to a wider and deeper understanding of basic theorems such as those on the structure of continuous convolution semigroups and the corresponding processes with independent increments. Fourier transformation ? the method applied within the settings of Banach spaces, locally compact Abelian groups and commutative hypergroups ? is given an in-depth discussion. This powerful analytic tool along with the relevant facts of harmonic analysis make it possible to study certain properties of stochastic processes in dependence of the algebraic-topological structure of their state spaces. In extension of the first edition, the new edition contains chapters on the probability theory of generalized convolution structures such as polynomial and Sturm?Liouville hypergroups, and on the central limit problem for groups such as tori, p-adic groups and solenoids.

Structural Aspects In The Theory Of Probability: A Primer In Probabilities On Algebraic - Topological Structures

Structural Aspects In The Theory Of Probability: A Primer In Probabilities On Algebraic - Topological Structures
Title Structural Aspects In The Theory Of Probability: A Primer In Probabilities On Algebraic - Topological Structures PDF eBook
Author Herbert Heyer
Publisher World Scientific
Pages 399
Release 2004-08-23
Genre Mathematics
ISBN 981448217X

Download Structural Aspects In The Theory Of Probability: A Primer In Probabilities On Algebraic - Topological Structures Book in PDF, Epub and Kindle

This book focuses on the algebraic-topological aspects of probability theory, leading to a wider and deeper understanding of basic theorems, such as those on the structure of continuous convolution semigroups and the corresponding processes with independent increments. The method applied within the setting of Banach spaces and of locally compact Abelian groups is that of the Fourier transform. This analytic tool along with the relevant parts of harmonic analysis makes it possible to study certain properties of stochastic processes in dependence of the algebraic-topological structure of their state spaces. Graduate students, lecturers and researchers may use the book as a primer in the theory of probability measures on groups and related structures.This book has been selected for coverage in:• CC / Physical, Chemical & Earth Sciences• Index to Scientific Book Contents® (ISBC)

Tychomancy

Tychomancy
Title Tychomancy PDF eBook
Author Michael Strevens
Publisher Harvard University Press
Pages 260
Release 2013-06-03
Genre Science
ISBN 0674076028

Download Tychomancy Book in PDF, Epub and Kindle

Tychomancy—meaning “the divination of chances”—presents a set of rules for inferring the physical probabilities of outcomes from the causal or dynamic properties of the systems that produce them. Probabilities revealed by the rules are wide-ranging: they include the probability of getting a 5 on a die roll, the probability distributions found in statistical physics, and the probabilities that underlie many prima facie judgments about fitness in evolutionary biology. Michael Strevens makes three claims about the rules. First, they are reliable. Second, they are known, though not fully consciously, to all human beings: they constitute a key part of the physical intuition that allows us to navigate around the world safely in the absence of formal scientific knowledge. Third, they have played a crucial but unrecognized role in several major scientific innovations. A large part of Tychomancy is devoted to this historical role for probability inference rules. Strevens first analyzes James Clerk Maxwell’s extraordinary, apparently a priori, deduction of the molecular velocity distribution in gases, which launched statistical physics. Maxwell did not derive his distribution from logic alone, Strevens proposes, but rather from probabilistic knowledge common to all human beings, even infants as young as six months old. Strevens then turns to Darwin’s theory of natural selection, the statistics of measurement, and the creation of models of complex systems, contending in each case that these elements of science could not have emerged when or how they did without the ability to “eyeball” the values of physical probabilities.

Geometric Aspects of Probability Theory and Mathematical Statistics

Geometric Aspects of Probability Theory and Mathematical Statistics
Title Geometric Aspects of Probability Theory and Mathematical Statistics PDF eBook
Author V.V. Buldygin
Publisher Springer Science & Business Media
Pages 314
Release 2013-06-29
Genre Mathematics
ISBN 9401716870

Download Geometric Aspects of Probability Theory and Mathematical Statistics Book in PDF, Epub and Kindle

It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.

A Modern Approach to Probability Theory

A Modern Approach to Probability Theory
Title A Modern Approach to Probability Theory PDF eBook
Author Bert E. Fristedt
Publisher Springer Science & Business Media
Pages 775
Release 2013-11-21
Genre Mathematics
ISBN 1489928375

Download A Modern Approach to Probability Theory Book in PDF, Epub and Kindle

Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.

Invariant Probabilities of Transition Functions

Invariant Probabilities of Transition Functions
Title Invariant Probabilities of Transition Functions PDF eBook
Author Radu Zaharopol
Publisher Springer
Pages 405
Release 2014-06-27
Genre Mathematics
ISBN 3319057235

Download Invariant Probabilities of Transition Functions Book in PDF, Epub and Kindle

The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of the state space, where the invariant ergodic probability measures play a significant role. Other topics covered include: characterizations of the supports of various types of invariant probability measures and the use of these to obtain criteria for unique ergodicity, and the proofs of two mean ergodic theorems for a certain type of transition functions. The book will be of interest to mathematicians working in ergodic theory, dynamical systems, or the theory of Markov processes. Biologists, physicists and economists interested in interacting particle systems and rigorous mathematics will also find this book a valuable resource. Parts of it are suitable for advanced graduate courses. Prerequisites are basic notions and results on functional analysis, general topology, measure theory, the Bochner integral and some of its applications.

Hilbert And Banach Space-valued Stochastic Processes

Hilbert And Banach Space-valued Stochastic Processes
Title Hilbert And Banach Space-valued Stochastic Processes PDF eBook
Author Yuichiro Kakihara
Publisher World Scientific
Pages 539
Release 2021-07-29
Genre Mathematics
ISBN 9811211760

Download Hilbert And Banach Space-valued Stochastic Processes Book in PDF, Epub and Kindle

This is a development of the book entitled Multidimensional Second Order Stochastic Processes. It provides a research expository treatment of infinite-dimensional stationary and nonstationary stochastic processes or time series, based on Hilbert and Banach space-valued second order random variables. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes as well as the stationary class. A new type of the Radon-Nikodým derivative of a Banach space-valued measure is introduced, together with Schauder basic measures, to study uniformly bounded linearly stationary processes.Emphasis is on the use of functional analysis and harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Generalizations are made to consider Banach space-valued stochastic processes to include processes of pth order for p ≥ 1. Readers may find that the covariance kernel is always emphasized and reveals another aspect of stochastic processes.This book is intended not only for probabilists and statisticians, but also for functional analysts and communication engineers.