String-Math 2013
Title | String-Math 2013 PDF eBook |
Author | Ron Donagi, Michael R. Douglas |
Publisher | American Mathematical Soc. |
Pages | 386 |
Release | 2014-12-02 |
Genre | Mathematics |
ISBN | 1470410516 |
This volume contains the proceedings of the conference `String-Math 2013' which was held June 17-21, 2013 at the Simons Center for Geometry and Physics at Stony Brook University. This was the third in a series of annual meetings devoted to the interface of mathematics and string theory. Topics include the latest developments in supersymmetric and topological field theory, localization techniques, the mathematics of quantum field theory, superstring compactification and duality, scattering amplitudes and their relation to Hodge theory, mirror symmetry and two-dimensional conformal field theory, and many more. This book will be important reading for researchers and students in the area, and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.
Eisenstein Series and Automorphic Representations
Title | Eisenstein Series and Automorphic Representations PDF eBook |
Author | Philipp Fleig |
Publisher | Cambridge University Press |
Pages | 588 |
Release | 2018-07-05 |
Genre | Mathematics |
ISBN | 1108118992 |
This introduction to automorphic forms on adelic groups G(A) emphasises the role of representation theory. The exposition is driven by examples, and collects and extends many results scattered throughout the literature, in particular the Langlands constant term formula for Eisenstein series on G(A) as well as the Casselman–Shalika formula for the p-adic spherical Whittaker function. This book also covers more advanced topics such as spherical Hecke algebras and automorphic L-functions. Many of these mathematical results have natural interpretations in string theory, and so some basic concepts of string theory are introduced with an emphasis on connections with automorphic forms. Throughout the book special attention is paid to small automorphic representations, which are of particular importance in string theory but are also of independent mathematical interest. Numerous open questions and conjectures, partially motivated by physics, are included to prompt the reader's own research.
The Theory of Jacobi Forms
Title | The Theory of Jacobi Forms PDF eBook |
Author | Martin Eichler |
Publisher | Springer Science & Business Media |
Pages | 156 |
Release | 2013-12-14 |
Genre | Mathematics |
ISBN | 1468491628 |
The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL (~) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t\-10 transformation eouations 2Tiimcz· k CT +d a-r +b z) (1) ((cT+d) e cp(T, z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four·ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T, z) 2: c(n, r) 2:: rE~ n=O 2 r ~ 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular formofweight k, whileforfixed T thefunction z-+rjl( -r, z) isa function of the type normally used to embed the elliptic curve ~/~T + ~ into a projective space. If m= 0, then cp is independent of z and the definition reduces to the usual notion of modular forms in one variable. We give three other examples of situations where functions satisfying (1)-(3) arise classically: 1. Theta series. Let Q: ~-+ ~ be a positive definite integer valued quadratic form and B the associated bilinear form.
Harmonic Maass Forms and Mock Modular Forms: Theory and Applications
Title | Harmonic Maass Forms and Mock Modular Forms: Theory and Applications PDF eBook |
Author | Kathrin Bringmann |
Publisher | American Mathematical Soc. |
Pages | 409 |
Release | 2017-12-15 |
Genre | Mathematics |
ISBN | 1470419440 |
Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10–15 years, this theory has been extended to certain non-holomorphic functions, the so-called “harmonic Maass forms”. The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called “mock theta functions” which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.
Conformal Field Theory, Automorphic Forms and Related Topics
Title | Conformal Field Theory, Automorphic Forms and Related Topics PDF eBook |
Author | Winfried Kohnen |
Publisher | Springer |
Pages | 370 |
Release | 2014-08-22 |
Genre | Mathematics |
ISBN | 3662438313 |
This book, part of the series Contributions in Mathematical and Computational Sciences, reviews recent developments in the theory of vertex operator algebras (VOAs) and their applications to mathematics and physics. The mathematical theory of VOAs originated from the famous monstrous moonshine conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship between the characters of the largest simple finite sporadic group, the Monster and the theory of modular forms inspired by the observations of J. MacKay and J. Thompson. The contributions are based on lectures delivered at the 2011 conference on Conformal Field Theory, Automorphic Forms and Related Topics, organized by the editors as part of a special program offered at Heidelberg University that summer under the sponsorship of the Mathematics Center Heidelberg (MATCH).
Strings, Gauge Fields, and the Geometry Behind
Title | Strings, Gauge Fields, and the Geometry Behind PDF eBook |
Author | Anton Rebhan |
Publisher | World Scientific |
Pages | 566 |
Release | 2013 |
Genre | Mathematics |
ISBN | 9814412546 |
This book contains exclusively invited contributions from collaborators of Maximilian Kreuzer, giving accounts of his scientific legacy and original articles from renowned theoretical physicists and mathematicians, including Victor Batyrev, Philip Candelas, Michael Douglas, Alexei Morozov, Joseph Polchinski, Peter van Nieuwenhuizen, and Peter West. Besides a collection of review and research articles from high-profile researchers in string theory and related fields of mathematics (in particular, algebraic geometry) which discuss recent progress in the exploration of string theory vacua and corresponding mathematical developments, this book contains a pedagogical account of the important work of Brandt, Dragon, and Kreuzer on classification of anomalies in gauge theories. This highly cited work, which is also quoted in the textbook of Steven Weinberg on quantum field theory, has not yet been presented in full detail except in private lecture notes by Norbert Dragon. Similarly, the software package PALP (Package for Analyzing Lattice Polytopes with applications to toric geometry), which has been incorporated in the SAGE (Software for Algebra and Geometry Experimentation) project, has not yet been documented in full detail. This book contains a user manual for a new thoroughly revised version of PALP. By including these two very useful original contributions, researchers in quantum field theory, string theory, and mathematics will find added value in a pedagogical presentation of the classification of quantum gauge field anomalies, and the accompanying comprehensive manual and tutorial for the powerful software package PALP.
The Calabi–Yau Landscape
Title | The Calabi–Yau Landscape PDF eBook |
Author | Yang-Hui He |
Publisher | Springer Nature |
Pages | 214 |
Release | 2021-07-31 |
Genre | Mathematics |
ISBN | 3030775623 |
Can artificial intelligence learn mathematics? The question is at the heart of this original monograph bringing together theoretical physics, modern geometry, and data science. The study of Calabi–Yau manifolds lies at an exciting intersection between physics and mathematics. Recently, there has been much activity in applying machine learning to solve otherwise intractable problems, to conjecture new formulae, or to understand the underlying structure of mathematics. In this book, insights from string and quantum field theory are combined with powerful techniques from complex and algebraic geometry, then translated into algorithms with the ultimate aim of deriving new information about Calabi–Yau manifolds. While the motivation comes from mathematical physics, the techniques are purely mathematical and the theme is that of explicit calculations. The reader is guided through the theory and provided with explicit computer code in standard software such as SageMath, Python and Mathematica to gain hands-on experience in applications of artificial intelligence to geometry. Driven by data and written in an informal style, The Calabi–Yau Landscape makes cutting-edge topics in mathematical physics, geometry and machine learning readily accessible to graduate students and beyond. The overriding ambition is to introduce some modern mathematics to the physicist, some modern physics to the mathematician, and machine learning to both.