Stochastic Optimization Methods

Stochastic Optimization Methods
Title Stochastic Optimization Methods PDF eBook
Author Kurt Marti
Publisher Springer
Pages 389
Release 2015-02-21
Genre Business & Economics
ISBN 3662462141

Download Stochastic Optimization Methods Book in PDF, Epub and Kindle

This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.

Applications of Stochastic Programming

Applications of Stochastic Programming
Title Applications of Stochastic Programming PDF eBook
Author Stein W. Wallace
Publisher SIAM
Pages 724
Release 2005-01-01
Genre Mathematics
ISBN 9780898718799

Download Applications of Stochastic Programming Book in PDF, Epub and Kindle

Consisting of two parts, this book presents papers describing publicly available stochastic programming systems that are operational. It presents a diverse collection of application papers in areas such as production, supply chain and scheduling, gaming, environmental and pollution control, financial modeling, telecommunications, and electricity.

Introduction to Stochastic Programming

Introduction to Stochastic Programming
Title Introduction to Stochastic Programming PDF eBook
Author John R. Birge
Publisher Springer Science & Business Media
Pages 427
Release 2006-04-06
Genre Mathematics
ISBN 0387226184

Download Introduction to Stochastic Programming Book in PDF, Epub and Kindle

This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.

Stochastic Programming Methods and Technical Applications

Stochastic Programming Methods and Technical Applications
Title Stochastic Programming Methods and Technical Applications PDF eBook
Author Kurt Marti
Publisher Springer Science & Business Media
Pages 448
Release 2012-12-06
Genre Mathematics
ISBN 3642457673

Download Stochastic Programming Methods and Technical Applications Book in PDF, Epub and Kindle

Optimization problems arising in practice usually contain several random parameters. Hence, in order to obtain optimal solutions being robust with respect to random parameter variations, the mostly available statistical information about the random parameters should be considered already at the planning phase. The original problem with random parameters must be replaced by an appropriate deterministic substitute problem, and efficient numerical solution or approximation techniques have to be developed for those problems. This proceedings volume contains a selection of papers on modelling techniques, approximation methods, numerical solution procedures for stochastic optimization problems and applications to the reliability-based optimization of concrete technical or economic systems.

Stochastic Programming: Applications In Finance, Energy, Planning And Logistics

Stochastic Programming: Applications In Finance, Energy, Planning And Logistics
Title Stochastic Programming: Applications In Finance, Energy, Planning And Logistics PDF eBook
Author Horand I Gassmann
Publisher World Scientific
Pages 549
Release 2012-11-28
Genre Business & Economics
ISBN 9814407526

Download Stochastic Programming: Applications In Finance, Energy, Planning And Logistics Book in PDF, Epub and Kindle

This book shows the breadth and depth of stochastic programming applications. All the papers presented here involve optimization over the scenarios that represent possible future outcomes of the uncertainty problems. The applications, which were presented at the 12th International Conference on Stochastic Programming held in Halifax, Nova Scotia in August 2010, span the rich field of uses of these models. The finance papers discuss such diverse problems as longevity risk management of individual investors, personal financial planning, intertemporal surplus management, asset management with benchmarks, dynamic portfolio management, fixed income immunization and racetrack betting. The production and logistics papers discuss natural gas infrastructure design, farming Atlantic salmon, prevention of nuclear smuggling and sawmill planning. The energy papers involve electricity production planning, hydroelectric reservoir operations and power generation planning for liquid natural gas plants. Finally, two telecommunication papers discuss mobile network design and frequency assignment problems./a

Stochastic Optimization

Stochastic Optimization
Title Stochastic Optimization PDF eBook
Author Stanislav Uryasev
Publisher Springer Science & Business Media
Pages 438
Release 2013-03-09
Genre Technology & Engineering
ISBN 1475765940

Download Stochastic Optimization Book in PDF, Epub and Kindle

Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.

Modeling with Stochastic Programming

Modeling with Stochastic Programming
Title Modeling with Stochastic Programming PDF eBook
Author Alan J. King
Publisher Springer Science & Business Media
Pages 189
Release 2012-06-19
Genre Mathematics
ISBN 0387878173

Download Modeling with Stochastic Programming Book in PDF, Epub and Kindle

While there are several texts on how to solve and analyze stochastic programs, this is the first text to address basic questions about how to model uncertainty, and how to reformulate a deterministic model so that it can be analyzed in a stochastic setting. This text would be suitable as a stand-alone or supplement for a second course in OR/MS or in optimization-oriented engineering disciplines where the instructor wants to explain where models come from and what the fundamental issues are. The book is easy-to-read, highly illustrated with lots of examples and discussions. It will be suitable for graduate students and researchers working in operations research, mathematics, engineering and related departments where there is interest in learning how to model uncertainty. Alan King is a Research Staff Member at IBM's Thomas J. Watson Research Center in New York. Stein W. Wallace is a Professor of Operational Research at Lancaster University Management School in England.