An Introduction to Random Matrices
Title | An Introduction to Random Matrices PDF eBook |
Author | Greg W. Anderson |
Publisher | Cambridge University Press |
Pages | 507 |
Release | 2010 |
Genre | Mathematics |
ISBN | 0521194520 |
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Stochastic Processes and Random Matrices
Title | Stochastic Processes and Random Matrices PDF eBook |
Author | Grégory Schehr |
Publisher | Oxford University Press |
Pages | 432 |
Release | 2017-08-15 |
Genre | Science |
ISBN | 0192517864 |
The field of stochastic processes and Random Matrix Theory (RMT) has been a rapidly evolving subject during the last fifteen years. The continuous development and discovery of new tools, connections and ideas have led to an avalanche of new results. These breakthroughs have been made possible thanks, to a large extent, to the recent development of various new techniques in RMT. Matrix models have been playing an important role in theoretical physics for a long time and they are currently also a very active domain of research in mathematics. An emblematic example of these recent advances concerns the theory of growth phenomena in the Kardar-Parisi-Zhang (KPZ) universality class where the joint efforts of physicists and mathematicians during the last twenty years have unveiled the beautiful connections between this fundamental problem of statistical mechanics and the theory of random matrices, namely the fluctuations of the largest eigenvalue of certain ensembles of random matrices. This text not only covers this topic in detail but also presents more recent developments that have emerged from these discoveries, for instance in the context of low dimensional heat transport (on the physics side) or integrable probability (on the mathematical side).
A Dynamical Approach to Random Matrix Theory
Title | A Dynamical Approach to Random Matrix Theory PDF eBook |
Author | László Erdős |
Publisher | American Mathematical Soc. |
Pages | 239 |
Release | 2017-08-30 |
Genre | Mathematics |
ISBN | 1470436485 |
A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
The Random Matrix Theory of the Classical Compact Groups
Title | The Random Matrix Theory of the Classical Compact Groups PDF eBook |
Author | Elizabeth S. Meckes |
Publisher | Cambridge University Press |
Pages | 225 |
Release | 2019-08-01 |
Genre | Mathematics |
ISBN | 1108317995 |
This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.
Large random matrices
Title | Large random matrices PDF eBook |
Author | Alice Guionnet |
Publisher | Springer Science & Business Media |
Pages | 296 |
Release | 2009-03-25 |
Genre | Mathematics |
ISBN | 3540698965 |
These lectures emphasize the relation between the problem of enumerating complicated graphs and the related large deviations questions. Such questions are closely related with the asymptotic distribution of matrices.
Random Matrices
Title | Random Matrices PDF eBook |
Author | Alexei Borodin |
Publisher | American Mathematical Soc. |
Pages | 513 |
Release | 2019-10-30 |
Genre | Education |
ISBN | 1470452804 |
Random matrix theory has many roots and many branches in mathematics, statistics, physics, computer science, data science, numerical analysis, biology, ecology, engineering, and operations research. This book provides a snippet of this vast domain of study, with a particular focus on the notations of universality and integrability. Universality shows that many systems behave the same way in their large scale limit, while integrability provides a route to describe the nature of those universal limits. Many of the ten contributed chapters address these themes, while others touch on applications of tools and results from random matrix theory. This book is appropriate for graduate students and researchers interested in learning techniques and results in random matrix theory from different perspectives and viewpoints. It also captures a moment in the evolution of the theory, when the previous decade brought major break-throughs, prompting exciting new directions of research.
Free Probability and Random Matrices
Title | Free Probability and Random Matrices PDF eBook |
Author | James A. Mingo |
Publisher | Springer |
Pages | 343 |
Release | 2017-06-24 |
Genre | Mathematics |
ISBN | 1493969420 |
This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.