Stochastic Partial Differential Equations with Lévy Noise
Title | Stochastic Partial Differential Equations with Lévy Noise PDF eBook |
Author | S. Peszat |
Publisher | Cambridge University Press |
Pages | 45 |
Release | 2007-10-11 |
Genre | Mathematics |
ISBN | 0521879892 |
Comprehensive monograph by two leading international experts; includes applications to statistical and fluid mechanics and to finance.
Numerical Methods for Stochastic Partial Differential Equations with White Noise
Title | Numerical Methods for Stochastic Partial Differential Equations with White Noise PDF eBook |
Author | Zhongqiang Zhang |
Publisher | Springer |
Pages | 391 |
Release | 2017-09-01 |
Genre | Mathematics |
ISBN | 3319575112 |
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
A Minicourse on Stochastic Partial Differential Equations
Title | A Minicourse on Stochastic Partial Differential Equations PDF eBook |
Author | Robert C. Dalang |
Publisher | Springer Science & Business Media |
Pages | 230 |
Release | 2009 |
Genre | Mathematics |
ISBN | 3540859934 |
This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.
The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise
Title | The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise PDF eBook |
Author | Arnaud Debussche |
Publisher | Springer |
Pages | 175 |
Release | 2013-10-01 |
Genre | Mathematics |
ISBN | 3319008285 |
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.
From Lévy-Type Processes to Parabolic SPDEs
Title | From Lévy-Type Processes to Parabolic SPDEs PDF eBook |
Author | Davar Khoshnevisan |
Publisher | Birkhäuser |
Pages | 214 |
Release | 2016-12-22 |
Genre | Mathematics |
ISBN | 3319341200 |
This volume presents the lecture notes from two courses given by Davar Khoshnevisan and René Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis. René Schilling’s notes are an expanded version of his course on Lévy and Lévy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Lévy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Lévy-Itô decomposition. On the other, it identifies the infinitesimal generator of the Lévy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Lévy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc. In turn, Davar Khoshnevisan’s course investigates selected problems in the field of stochastic partial differential equations of parabolic type. More precisely, the main objective is to establish an Invariance Principle for those equations in a rather general setting, and to deduce, as an application, comparison-type results. The framework in which these problems are addressed goes beyond the classical setting, in the sense that the driving noise is assumed to be a multiplicative space-time white noise on a group, and the underlying elliptic operator corresponds to a generator of a Lévy process on that group. This implies that stochastic integration with respect to the above noise, as well as the existence and uniqueness of a solution for the corresponding equation, become relevant in their own right. These aspects are also developed and supplemented by a wealth of illustrative examples.
Lévy Processes and Stochastic Calculus
Title | Lévy Processes and Stochastic Calculus PDF eBook |
Author | David Applebaum |
Publisher | Cambridge University Press |
Pages | 461 |
Release | 2009-04-30 |
Genre | Mathematics |
ISBN | 1139477986 |
Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.
An Introduction to Computational Stochastic PDEs
Title | An Introduction to Computational Stochastic PDEs PDF eBook |
Author | Gabriel J. Lord |
Publisher | Cambridge University Press |
Pages | 516 |
Release | 2014-08-11 |
Genre | Business & Economics |
ISBN | 0521899907 |
This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.