Stochastic Optimization Methods

Stochastic Optimization Methods
Title Stochastic Optimization Methods PDF eBook
Author Kurt Marti
Publisher Springer
Pages 389
Release 2015-02-21
Genre Business & Economics
ISBN 3662462141

Download Stochastic Optimization Methods Book in PDF, Epub and Kindle

This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.

First-order and Stochastic Optimization Methods for Machine Learning

First-order and Stochastic Optimization Methods for Machine Learning
Title First-order and Stochastic Optimization Methods for Machine Learning PDF eBook
Author Guanghui Lan
Publisher Springer Nature
Pages 591
Release 2020-05-15
Genre Mathematics
ISBN 3030395685

Download First-order and Stochastic Optimization Methods for Machine Learning Book in PDF, Epub and Kindle

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Stochastic Optimization

Stochastic Optimization
Title Stochastic Optimization PDF eBook
Author Johannes Schneider
Publisher Springer Science & Business Media
Pages 551
Release 2007-08-06
Genre Computers
ISBN 3540345604

Download Stochastic Optimization Book in PDF, Epub and Kindle

This book addresses stochastic optimization procedures in a broad manner. The first part offers an overview of relevant optimization philosophies; the second deals with benchmark problems in depth, by applying a selection of optimization procedures. Written primarily with scientists and students from the physical and engineering sciences in mind, this book addresses a larger community of all who wish to learn about stochastic optimization techniques and how to use them.

Stochastic Optimization for Large-scale Machine Learning

Stochastic Optimization for Large-scale Machine Learning
Title Stochastic Optimization for Large-scale Machine Learning PDF eBook
Author Vinod Kumar Chauhan
Publisher CRC Press
Pages 189
Release 2021-11-18
Genre Computers
ISBN 1000505618

Download Stochastic Optimization for Large-scale Machine Learning Book in PDF, Epub and Kindle

Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning.

Stochastic Optimization Methods

Stochastic Optimization Methods
Title Stochastic Optimization Methods PDF eBook
Author Kurt Marti
Publisher Springer Science & Business Media
Pages 317
Release 2005-12-05
Genre Business & Economics
ISBN 3540268480

Download Stochastic Optimization Methods Book in PDF, Epub and Kindle

Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.

Stochastic Optimization Models in Finance

Stochastic Optimization Models in Finance
Title Stochastic Optimization Models in Finance PDF eBook
Author William T. Ziemba
Publisher World Scientific
Pages 756
Release 2006
Genre Business & Economics
ISBN 981256800X

Download Stochastic Optimization Models in Finance Book in PDF, Epub and Kindle

A reprint of one of the classic volumes on portfolio theory and investment, this book has been used by the leading professors at universities such as Stanford, Berkeley, and Carnegie-Mellon. It contains five parts, each with a review of the literature and about 150 pages of computational and review exercises and further in-depth, challenging problems.Frequently referenced and highly usable, the material remains as fresh and relevant for a portfolio theory course as ever.

Stochastic Optimization

Stochastic Optimization
Title Stochastic Optimization PDF eBook
Author Stanislav Uryasev
Publisher Springer Science & Business Media
Pages 438
Release 2013-03-09
Genre Technology & Engineering
ISBN 1475765940

Download Stochastic Optimization Book in PDF, Epub and Kindle

Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.