Stochastic Neuron Models

Stochastic Neuron Models
Title Stochastic Neuron Models PDF eBook
Author Priscilla E. Greenwood
Publisher Springer
Pages 82
Release 2016-02-02
Genre Mathematics
ISBN 3319269119

Download Stochastic Neuron Models Book in PDF, Epub and Kindle

This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain Research Centre at the University of British Columbia.

Neuronal Dynamics

Neuronal Dynamics
Title Neuronal Dynamics PDF eBook
Author Wulfram Gerstner
Publisher Cambridge University Press
Pages 591
Release 2014-07-24
Genre Computers
ISBN 1107060834

Download Neuronal Dynamics Book in PDF, Epub and Kindle

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Neural Networks

Neural Networks
Title Neural Networks PDF eBook
Author Berndt Müller
Publisher Springer Science & Business Media
Pages 340
Release 2012-12-06
Genre Computers
ISBN 3642577601

Download Neural Networks Book in PDF, Epub and Kindle

Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.

Advanced Models of Neural Networks

Advanced Models of Neural Networks
Title Advanced Models of Neural Networks PDF eBook
Author Gerasimos G. Rigatos
Publisher Springer
Pages 296
Release 2014-08-27
Genre Technology & Engineering
ISBN 3662437643

Download Advanced Models of Neural Networks Book in PDF, Epub and Kindle

This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

Stochastic Models in Biology

Stochastic Models in Biology
Title Stochastic Models in Biology PDF eBook
Author Narendra S. Goel
Publisher Elsevier
Pages 282
Release 2013-10-22
Genre Science
ISBN 1483278107

Download Stochastic Models in Biology Book in PDF, Epub and Kindle

Stochastic Models in Biology describes the usefulness of the theory of stochastic process in studying biological phenomena. The book describes analysis of biological systems and experiments though probabilistic models rather than deterministic methods. The text reviews the mathematical analyses for modeling different biological systems such as the random processes continuous in time and discrete in state space. The book also discusses population growth and extinction through Malthus' law and the work of MacArthur and Wilson. The text then explains the dynamics of a population of interacting species. The book also addresses population genetics under systematic evolutionary pressures known as deterministic equations and genetic changes in a finite population known as stochastic equations. The text then turns to stochastic modeling of biological systems at the molecular level, particularly the kinetics of biochemical reactions. The book also presents various useful equations such as the differential equation for generating functions for birth and death processes. The text can prove valuable for biochemists, cellular biologists, and researchers in the medical and chemical field who are tasked to perform data analysis.

Spiking Neuron Models

Spiking Neuron Models
Title Spiking Neuron Models PDF eBook
Author Wulfram Gerstner
Publisher Cambridge University Press
Pages 498
Release 2002-08-15
Genre Computers
ISBN 9780521890793

Download Spiking Neuron Models Book in PDF, Epub and Kindle

Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.

Modern Techniques in Neuroscience Research

Modern Techniques in Neuroscience Research
Title Modern Techniques in Neuroscience Research PDF eBook
Author Uwe Windhorst
Publisher Springer Science & Business Media
Pages 1336
Release 2012-12-06
Genre Medical
ISBN 3642585523

Download Modern Techniques in Neuroscience Research Book in PDF, Epub and Kindle

An overview of the techniques used in modern neuroscience research with the emphasis on showing how different techniques can optimally be combined in the study of problems that arise at some levels of nervous system organization. This is essentially a working tool for the scientist in the laboratory and clinic, providing detailed step-by-step protocols with tips and recommendations. Most chapters and protocols are organized such that they can be used independently, while cross-references between the chapters, a glossary, a list of suppliers and appendices provide further help.