Stochastic Network Optimization with Application to Communication and Queueing Systems
Title | Stochastic Network Optimization with Application to Communication and Queueing Systems PDF eBook |
Author | Michael Neely |
Publisher | Springer Nature |
Pages | 199 |
Release | 2022-05-31 |
Genre | Computers |
ISBN | 303179995X |
This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are provided to illustrate the cost of approaching optimality. This theory is also applicable to problems in operations research and economics, where energy-efficient and profit-maximizing decisions must be made without knowing the future. Topics in the text include the following: - Queue stability theory - Backpressure, max-weight, and virtual queue methods - Primal-dual methods for non-convex stochastic utility maximization - Universal scheduling theory for arbitrary sample paths - Approximate and randomized scheduling theory - Optimization of renewal systems and Markov decision systems Detailed examples and numerous problem set questions are provided to reinforce the main concepts. Table of Contents: Introduction / Introduction to Queues / Dynamic Scheduling Example / Optimizing Time Averages / Optimizing Functions of Time Averages / Approximate Scheduling / Optimization of Renewal Systems / Conclusions
Stochastic Network Optimization with Application to Communication and Queueing Systems
Title | Stochastic Network Optimization with Application to Communication and Queueing Systems PDF eBook |
Author | Michael J. Neely |
Publisher | Morgan & Claypool Publishers |
Pages | 212 |
Release | 2010 |
Genre | Computers |
ISBN | 160845455X |
This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are provided to illustrate the cost of approaching optimality. This theory is also applicable to problems in operations research and economics, where energy-efficient and profit-maximizing decisions must be made without knowing the future. Topics in the text include the following: - Queue stability theory - Backpressure, max-weight, and virtual queue methods - Primal-dual methods for non-convex stochastic utility maximization - Universal scheduling theory for arbitrary sample paths - Approximate and randomized scheduling theory - Optimization of renewal systems and Markov decision systems Detailed examples and numerous problem set questions are provided to reinforce the main concepts. Table of Contents: Introduction / Introduction to Queues / Dynamic Scheduling Example / Optimizing Time Averages / Optimizing Functions of Time Averages / Approximate Scheduling / Optimization of Renewal Systems / Conclusions
Stochastic Network Optimization with Application to Communication and Queueing Systems
Title | Stochastic Network Optimization with Application to Communication and Queueing Systems PDF eBook |
Author | George Kesidis |
Publisher | |
Pages | 0 |
Release | 2010 |
Genre | Artificial intelligence |
ISBN | 9788303179999 |
This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are provided to illustrate the cost of approaching optimality. This theory is also applicable to problems in operations research and economics, where energy-efficient and profit-maximizing decisions must be made without knowing the future. Topics in the text include the following: - Queue stability theory - Backpressure, max-weight, and virtual queue methods - Primal-dual methods for non-convex stochastic utility maximization - Universal scheduling theory for arbitrary sample paths - Approximate and randomized scheduling theory - Optimization of renewal systems and Markov decision systems Detailed examples and numerous problem set questions are provided to reinforce the main concepts. Table of Contents: Introduction / Introduction to Queues / Dynamic Scheduling Example / Optimizing Time Averages / Optimizing Functions of Time Averages / Approximate Scheduling / Optimization of Renewal Systems / Conclusions.
Stochastic Networks
Title | Stochastic Networks PDF eBook |
Author | Frank Kelly |
Publisher | Cambridge University Press |
Pages | 233 |
Release | 2014-02-27 |
Genre | Computers |
ISBN | 1107035775 |
A compact, highly-motivated introduction to some of the stochastic models found useful in the study of communications networks.
Probability in Electrical Engineering and Computer Science
Title | Probability in Electrical Engineering and Computer Science PDF eBook |
Author | Jean Walrand |
Publisher | Springer Nature |
Pages | 391 |
Release | 2021-06-22 |
Genre | Computers |
ISBN | 3030499952 |
This revised textbook motivates and illustrates the techniques of applied probability by applications in electrical engineering and computer science (EECS). The author presents information processing and communication systems that use algorithms based on probabilistic models and techniques, including web searches, digital links, speech recognition, GPS, route planning, recommendation systems, classification, and estimation. He then explains how these applications work and, along the way, provides the readers with the understanding of the key concepts and methods of applied probability. Python labs enable the readers to experiment and consolidate their understanding. The book includes homework, solutions, and Jupyter notebooks. This edition includes new topics such as Boosting, Multi-armed bandits, statistical tests, social networks, queuing networks, and neural networks. For ancillaries related to this book, including examples of Python demos and also Python labs used in Berkeley, please email Mary James at [email protected]. This is an open access book.
Performance Modeling, Stochastic Networks, and Statistical Multiplexing, Second Edition
Title | Performance Modeling, Stochastic Networks, and Statistical Multiplexing, Second Edition PDF eBook |
Author | Ravi Mazumdar |
Publisher | Springer Nature |
Pages | 197 |
Release | 2022-05-31 |
Genre | Computers |
ISBN | 3031792602 |
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in computing performance measures. The monograph also covers stochastic network theory including Markovian networks. Recent results on network utility optimization and connections to stochastic insensitivity are discussed. Also presented are ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. In particular, the important concept of effective bandwidths as mappings from queueing level phenomena to loss network models is clearly presented along with a detailed discussion of accurate approximations for large networks.
Collaborative Computing: Networking, Applications and Worksharing
Title | Collaborative Computing: Networking, Applications and Worksharing PDF eBook |
Author | Honghao Gao |
Publisher | Springer Nature |
Pages | 481 |
Release | 2022-01-01 |
Genre | Computers |
ISBN | 3030926389 |
This two-volume set constitutes the refereed proceedings of the 17th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 62 full papers and 7 short papers presented were carefully reviewed and selected from 206 submissions. The papers reflect the conference sessions as follows: Optimization for Collaborate System; Optimization based on Collaborative Computing; UVA and Traffic system; Recommendation System; Recommendation System & Network and Security; Network and Security; Network and Security & IoT and Social Networks; IoT and Social Networks & Images handling and human recognition; Images handling and human recognition & Edge Computing; Edge Computing; Edge Computing & Collaborative working; Collaborative working & Deep Learning and application; Deep Learning and application; Deep Learning and application; Deep Learning and application & UVA.