Stochastic Interacting Systems: Contact, Voter and Exclusion Processes
Title | Stochastic Interacting Systems: Contact, Voter and Exclusion Processes PDF eBook |
Author | Thomas M. Liggett |
Publisher | Springer Science & Business Media |
Pages | 346 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 3662039907 |
Interactive particle systems is a branch of probability theory with close connections to mathematical physics and mathematical biology. This book takes three of the most important models in the area, and traces advances in our understanding of them since 1985. It explains and develops many of the most useful techniques in the field.
Stochastic Models of Systems
Title | Stochastic Models of Systems PDF eBook |
Author | Vladimir S. Korolyuk |
Publisher | Springer Science & Business Media |
Pages | 195 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 940114625X |
In this monograph stochastic models of systems analysis are discussed. It covers many aspects and different stages from the construction of mathematical models of real systems, through mathematical analysis of models based on simplification methods, to the interpretation of real stochastic systems. The stochastic models described here share the property that their evolutionary aspects develop under the influence of random factors. It has been assumed that the evolution takes place in a random medium, i.e. unilateral interaction between the system and the medium. As only Markovian models of random medium are considered in this book, the stochastic models described here are determined by two processes, a switching process describing the evolution of the systems and a switching process describing the changes of the random medium. Audience: This book will be of interest to postgraduate students and researchers whose work involves probability theory, stochastic processes, mathematical systems theory, ordinary differential equations, operator theory, or mathematical modelling and industrial mathematics.
Stochastic Modeling
Title | Stochastic Modeling PDF eBook |
Author | Nicolas Lanchier |
Publisher | Springer |
Pages | 305 |
Release | 2017-01-27 |
Genre | Mathematics |
ISBN | 3319500384 |
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and MatlabTM.
Stochastic Models in Biology
Title | Stochastic Models in Biology PDF eBook |
Author | Narendra S. Goel |
Publisher | Elsevier |
Pages | 282 |
Release | 2013-10-22 |
Genre | Science |
ISBN | 1483278107 |
Stochastic Models in Biology describes the usefulness of the theory of stochastic process in studying biological phenomena. The book describes analysis of biological systems and experiments though probabilistic models rather than deterministic methods. The text reviews the mathematical analyses for modeling different biological systems such as the random processes continuous in time and discrete in state space. The book also discusses population growth and extinction through Malthus' law and the work of MacArthur and Wilson. The text then explains the dynamics of a population of interacting species. The book also addresses population genetics under systematic evolutionary pressures known as deterministic equations and genetic changes in a finite population known as stochastic equations. The text then turns to stochastic modeling of biological systems at the molecular level, particularly the kinetics of biochemical reactions. The book also presents various useful equations such as the differential equation for generating functions for birth and death processes. The text can prove valuable for biochemists, cellular biologists, and researchers in the medical and chemical field who are tasked to perform data analysis.
Stochastic Modelling for Systems Biology, Third Edition
Title | Stochastic Modelling for Systems Biology, Third Edition PDF eBook |
Author | Darren J. Wilkinson |
Publisher | CRC Press |
Pages | 366 |
Release | 2018-12-07 |
Genre | Mathematics |
ISBN | 1351000896 |
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
Stochastic Modelling of Reaction–Diffusion Processes
Title | Stochastic Modelling of Reaction–Diffusion Processes PDF eBook |
Author | Radek Erban |
Publisher | Cambridge University Press |
Pages | 322 |
Release | 2020-01-30 |
Genre | Mathematics |
ISBN | 1108572995 |
This practical introduction to stochastic reaction-diffusion modelling is based on courses taught at the University of Oxford. The authors discuss the essence of mathematical methods which appear (under different names) in a number of interdisciplinary scientific fields bridging mathematics and computations with biology and chemistry. The book can be used both for self-study and as a supporting text for advanced undergraduate or beginning graduate-level courses in applied mathematics. New mathematical approaches are explained using simple examples of biological models, which range in size from simulations of small biomolecules to groups of animals. The book starts with stochastic modelling of chemical reactions, introducing stochastic simulation algorithms and mathematical methods for analysis of stochastic models. Different stochastic spatio-temporal models are then studied, including models of diffusion and stochastic reaction-diffusion modelling. The methods covered include molecular dynamics, Brownian dynamics, velocity jump processes and compartment-based (lattice-based) models.
An Introduction to Stochastic Modeling
Title | An Introduction to Stochastic Modeling PDF eBook |
Author | Howard M. Taylor |
Publisher | Academic Press |
Pages | 410 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.