Stochastic Models: Estimation and Control: v. 2
Title | Stochastic Models: Estimation and Control: v. 2 PDF eBook |
Author | Maybeck |
Publisher | Academic Press |
Pages | 307 |
Release | 1982-08-10 |
Genre | Mathematics |
ISBN | 0080956513 |
Stochastic Models: Estimation and Control: v. 2
Stochastic Models: Estimation and Control: v. 1
Title | Stochastic Models: Estimation and Control: v. 1 PDF eBook |
Author | Maybeck |
Publisher | Academic Press |
Pages | 445 |
Release | 1979-07-17 |
Genre | Mathematics |
ISBN | 0080956505 |
Stochastic Models: Estimation and Control: v. 1
Stochastic Models, Estimation, and Control
Title | Stochastic Models, Estimation, and Control PDF eBook |
Author | Peter S. Maybeck |
Publisher | Academic Press |
Pages | 311 |
Release | 1982-08-25 |
Genre | Mathematics |
ISBN | 0080960030 |
This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.
Stochastic Systems
Title | Stochastic Systems PDF eBook |
Author | P. R. Kumar |
Publisher | SIAM |
Pages | 371 |
Release | 2015-12-15 |
Genre | Mathematics |
ISBN | 1611974259 |
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.
An Introduction to Stochastic Modeling
Title | An Introduction to Stochastic Modeling PDF eBook |
Author | Howard M. Taylor |
Publisher | Academic Press |
Pages | 410 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Hidden Markov Models
Title | Hidden Markov Models PDF eBook |
Author | Robert J Elliott |
Publisher | Springer Science & Business Media |
Pages | 374 |
Release | 2008-09-27 |
Genre | Science |
ISBN | 0387848541 |
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.
Bayesian Analysis of Linear Models
Title | Bayesian Analysis of Linear Models PDF eBook |
Author | Broemeling |
Publisher | CRC Press |
Pages | 472 |
Release | 2017-11-22 |
Genre | Mathematics |
ISBN | 1351464485 |
With Bayesian statistics rapidly becoming accepted as a way to solve applied statisticalproblems, the need for a comprehensive, up-to-date source on the latest advances in thisfield has arisen.Presenting the basic theory of a large variety of linear models from a Bayesian viewpoint,Bayesian Analysis of Linear Models fills this need. Plus, this definitive volume containssomething traditional-a review of Bayesian techniques and methods of estimation, hypothesis,testing, and forecasting as applied to the standard populations ... somethinginnovative-a new approach to mixed models and models not generally studied by statisticianssuch as linear dynamic systems and changing parameter models ... and somethingpractical-clear graphs, eary-to-understand examples, end-of-chapter problems, numerousreferences, and a distribution appendix.Comprehensible, unique, and in-depth, Bayesian Analysis of Linear Models is the definitivemonograph for statisticians, econometricians, and engineers. In addition, this text isideal for students in graduate-level courses such as linear models, econometrics, andBayesian inference.