Stochastic Processes in Engineering Systems
Title | Stochastic Processes in Engineering Systems PDF eBook |
Author | E. Wong |
Publisher | Springer Science & Business Media |
Pages | 372 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461250609 |
This book is a revision of Stochastic Processes in Information and Dynamical Systems written by the first author (E.W.) and published in 1971. The book was originally written, and revised, to provide a graduate level text in stochastic processes for students whose primary interest is its applications. It treats both the traditional topic of sta tionary processes in linear time-invariant systems as well as the more modern theory of stochastic systems in which dynamic structure plays a profound role. Our aim is to provide a high-level, yet readily acces sible, treatment of those topics in the theory of continuous-parameter stochastic processes that are important in the analysis of information and dynamical systems. The theory of stochastic processes can easily become abstract. In dealing with it from an applied point of view, we have found it difficult to decide on the appropriate level of rigor. We intend to provide just enough mathematical machinery so that important results can be stated PREFACE vi with precision and clarity; so much ofthe theory of stochastic processes is inherently simple if the suitable framework is provided. The price of providing this framework seems worth paying even though the ul timate goal is in applications and not the mathematics per se.
Stochastic Methods for Estimation and Problem Solving in Engineering
Title | Stochastic Methods for Estimation and Problem Solving in Engineering PDF eBook |
Author | Kadry, Seifedine |
Publisher | IGI Global |
Pages | 291 |
Release | 2018-03-02 |
Genre | Technology & Engineering |
ISBN | 1522550461 |
Utilizing mathematical algorithms is an important aspect of recreating real-world problems in order to make important decisions. By generating a randomized algorithm that produces statistical patterns, it becomes easier to find solutions to countless situations. Stochastic Methods for Estimation and Problem Solving in Engineering provides emerging research on the role of random probability systems in mathematical models used in various fields of research. While highlighting topics, such as random probability distribution, linear systems, and transport profiling, this book explores the use and behavior of uncertain probability methods in business and science. This book is an important resource for engineers, researchers, students, professionals, and practitioners seeking current research on the challenges and opportunities of non-deterministic probability models.
Stochastic Methods in Engineering
Title | Stochastic Methods in Engineering PDF eBook |
Author | I. St Doltsinis |
Publisher | WIT Press |
Pages | 379 |
Release | 2012 |
Genre | Mathematics |
ISBN | 1845646266 |
The increasing industrial demand for reliable quantification and management of uncertainty in product performance forces engineers to employ probabilistic models in analysis and design, a fact that has occasioned considerable research and development activities in the field. Notes on Stochastics eventually address the topic of computational stochastic mechanics. The single volume uniquely presents tutorials on essential probabilistics and statistics, recent finite element methods for stochastic analysis by Taylor series expansion as well as Monte Carlo simulation techniques. Design improvement and robust optimisation represent key issues as does reliability assessment. The subject is developed for solids and structures of elastic and elasto-plastic material, large displacements and material deformation processes; principles are transferable to various disciplines. A chapter is devoted to the statistical comparison of systems exhibiting random scatter. Where appropriate examples illustrate the theory, problems to solve appear instructive; applications are presented with relevance to engineering practice. The book, emanating from a university course, includes research and development in the field of computational stochastic analysis and optimization. It is intended for advanced students in engineering and for professionals who wish to extend their knowledge and skills in computational mechanics to the domain of stochastics. Contents: Introduction, Randomness, Structural analysis by Taylor series expansion, Design optimization, Robustness, Monte Carlo techniques for system response and design improvement, Reliability, Time variant phenomena, Material deformation processes, Analysis and comparison of data sets, Probability distribution of test functions.
Stochastic Processes in Science, Engineering and Finance
Title | Stochastic Processes in Science, Engineering and Finance PDF eBook |
Author | Frank Beichelt |
Publisher | CRC Press |
Pages | 438 |
Release | 2006-02-22 |
Genre | Mathematics |
ISBN | 9781420010459 |
This book presents a self-contained introduction to stochastic processes with emphasis on their applications in science, engineering, finance, computer science, and operations research. It provides theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates their application by analyzing numerous practical examples. The treatment assumes few prerequisites, requiring only the standard mathematical maturity acquired by undergraduate applied science students. It includes an introductory chapter that summarizes the basic probability theory needed as background. Numerous exercises reinforce the concepts and techniques discussed and allow readers to assess their grasp of the subject. Solutions to most of the exercises are provided in an appendix. While focused primarily on practical aspects, the presentation includes some important proofs along with more challenging examples and exercises for those more theoretically inclined. Mastering the contents of this book prepares readers to apply stochastic modeling in their own fields and enables them to work more creatively with software designed for dealing with the data analysis aspects of stochastic processes.
Stochastic Processes and Applications
Title | Stochastic Processes and Applications PDF eBook |
Author | Grigorios A. Pavliotis |
Publisher | Springer |
Pages | 345 |
Release | 2014-11-19 |
Genre | Mathematics |
ISBN | 1493913239 |
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Stochastic Optimization Methods
Title | Stochastic Optimization Methods PDF eBook |
Author | Kurt Marti |
Publisher | Springer |
Pages | 389 |
Release | 2015-02-21 |
Genre | Business & Economics |
ISBN | 3662462141 |
This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.
Stochastic Models in Reliability Engineering
Title | Stochastic Models in Reliability Engineering PDF eBook |
Author | Lirong Cui |
Publisher | CRC Press |
Pages | 402 |
Release | 2020-09-01 |
Genre | Mathematics |
ISBN | 1000094618 |
This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, and dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, and experiments and applied probability and statistics.