Stochastic Local Search

Stochastic Local Search
Title Stochastic Local Search PDF eBook
Author Holger H. Hoos
Publisher Morgan Kaufmann
Pages 678
Release 2005
Genre Business & Economics
ISBN 1558608729

Download Stochastic Local Search Book in PDF, Epub and Kindle

Stochastic local search (SLS) algorithms are among the most prominent and successful techniques for solving computationally difficult problems. Offering a systematic treatment of SLS algorithms, this book examines the general concepts and specific instances of SLS algorithms and considers their development, analysis and application.

Stochastic Adaptive Search for Global Optimization

Stochastic Adaptive Search for Global Optimization
Title Stochastic Adaptive Search for Global Optimization PDF eBook
Author Z.B. Zabinsky
Publisher Springer Science & Business Media
Pages 236
Release 2013-11-27
Genre Mathematics
ISBN 1441991824

Download Stochastic Adaptive Search for Global Optimization Book in PDF, Epub and Kindle

The field of global optimization has been developing at a rapid pace. There is a journal devoted to the topic, as well as many publications and notable books discussing various aspects of global optimization. This book is intended to complement these other publications with a focus on stochastic methods for global optimization. Stochastic methods, such as simulated annealing and genetic algo rithms, are gaining in popularity among practitioners and engineers be they are relatively easy to program on a computer and may be cause applied to a broad class of global optimization problems. However, the theoretical performance of these stochastic methods is not well under stood. In this book, an attempt is made to describe the theoretical prop erties of several stochastic adaptive search methods. Such a theoretical understanding may allow us to better predict algorithm performance and ultimately design new and improved algorithms. This book consolidates a collection of papers on the analysis and de velopment of stochastic adaptive search. The first chapter introduces random search algorithms. Chapters 2-5 describe the theoretical anal ysis of a progression of algorithms. A main result is that the expected number of iterations for pure adaptive search is linear in dimension for a class of Lipschitz global optimization problems. Chapter 6 discusses algorithms, based on the Hit-and-Run sampling method, that have been developed to approximate the ideal performance of pure random search. The final chapter discusses several applications in engineering that use stochastic adaptive search methods.

Experimental Methods for the Analysis of Optimization Algorithms

Experimental Methods for the Analysis of Optimization Algorithms
Title Experimental Methods for the Analysis of Optimization Algorithms PDF eBook
Author Thomas Bartz-Beielstein
Publisher Springer Science & Business Media
Pages 469
Release 2010-11-02
Genre Computers
ISBN 3642025382

Download Experimental Methods for the Analysis of Optimization Algorithms Book in PDF, Epub and Kindle

In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.

Handbook of Heuristics

Handbook of Heuristics
Title Handbook of Heuristics PDF eBook
Author Rafael Martí
Publisher Springer
Pages 3000
Release 2017-01-16
Genre Computers
ISBN 9783319071237

Download Handbook of Heuristics Book in PDF, Epub and Kindle

Heuristics are strategies using readily accessible, loosely applicable information to control problem solving. Algorithms, for example, are a type of heuristic. By contrast, Metaheuristics are methods used to design Heuristics and may coordinate the usage of several Heuristics toward the formulation of a single method. GRASP (Greedy Randomized Adaptive Search Procedures) is an example of a Metaheuristic. To the layman, heuristics may be thought of as ‘rules of thumb’ but despite its imprecision, heuristics is a very rich field that refers to experience-based techniques for problem-solving, learning, and discovery. Any given solution/heuristic is not guaranteed to be optimal but heuristic methodologies are used to speed up the process of finding satisfactory solutions where optimal solutions are impractical. The introduction to this Handbook provides an overview of the history of Heuristics along with main issues regarding the methodologies covered. This is followed by Chapters containing various examples of local searches, search strategies and Metaheuristics, leading to an analyses of Heuristics and search algorithms. The reference concludes with numerous illustrations of the highly applicable nature and implementation of Heuristics in our daily life. Each chapter of this work includes an abstract/introduction with a short description of the methodology. Key words are also necessary as part of top-matter to each chapter to enable maximum search engine optimization. Next, chapters will include discussion of the adaptation of this methodology to solve a difficult optimization problem, and experiments on a set of representative problems.

Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics
Title Handbook of Approximation Algorithms and Metaheuristics PDF eBook
Author Teofilo F. Gonzalez
Publisher CRC Press
Pages 840
Release 2018-05-15
Genre Computers
ISBN 1351236407

Download Handbook of Approximation Algorithms and Metaheuristics Book in PDF, Epub and Kindle

Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.

Local Search in Combinatorial Optimization

Local Search in Combinatorial Optimization
Title Local Search in Combinatorial Optimization PDF eBook
Author Emile H. L. Aarts
Publisher Princeton University Press
Pages 530
Release 2003-08-03
Genre Computers
ISBN 9780691115221

Download Local Search in Combinatorial Optimization Book in PDF, Epub and Kindle

1. Introduction -- 2. Computational complexity -- 3. Local improvement on discrete structures -- 4. Simulated annealing -- 5. Tabu search -- 6. Genetic algorithms -- 7. Artificial neural networks -- 8. The traveling salesman problem: A case study -- 9. Vehicle routing: Modern heuristics -- 10. Vehicle routing: Handling edge exchanges -- 11. Machine scheduling -- 12. VLSI layout synthesis -- 13. Code design.

Theory and Applications of Satisfiability Testing - SAT 2010

Theory and Applications of Satisfiability Testing - SAT 2010
Title Theory and Applications of Satisfiability Testing - SAT 2010 PDF eBook
Author Ofer Strichman
Publisher Springer
Pages 411
Release 2010-07-09
Genre Computers
ISBN 3642141862

Download Theory and Applications of Satisfiability Testing - SAT 2010 Book in PDF, Epub and Kindle

Annotation. This book constitutes the refereed proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing, SAT 2010, held in Edinburgh, UK, in July 2010 as part of the Federated Logic Conference, FLoC 2010. The 21 revised full papers presented together with 14 revised short papers and 2 invited talks were carefully selected from 75 submissions. The papers cover a broad range of topics such as proof systems and proof complexity; search algorithms and heuristics; analysis of algorithms; combinatorial theory of satisfiability; random instances vs structured instances; problem encodings; industrial applications; applications to combinatorics; solvers, simplifiers and tools; and exact and parameterized algorithms.