Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor
Title Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor PDF eBook
Author
Publisher
Pages
Release 2012
Genre
ISBN

Download Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor Book in PDF, Epub and Kindle

The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor

Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor
Title Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor PDF eBook
Author
Publisher
Pages
Release 2012
Genre
ISBN

Download Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor Book in PDF, Epub and Kindle

The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are very similar. The purpose and design of this experiment will be discussed followed by its progress and status to date.

Completion of the First NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor

Completion of the First NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor
Title Completion of the First NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor PDF eBook
Author
Publisher
Pages
Release 2010
Genre
ISBN

Download Completion of the First NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor Book in PDF, Epub and Kindle

The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The design of AGR-1 test train and support systems used to monitor and control the experiment during irradiation will be discussed and the results of the experiment will be presented. The second experiment (AGR-2) is currently being assembled, and the status as well as the new fuel and irradiation conditions for that experiment will also be discussed.

AGR-2 Data Qualification Report for ATR Cycles 147A, 148A, 148B, and 149A

AGR-2 Data Qualification Report for ATR Cycles 147A, 148A, 148B, and 149A
Title AGR-2 Data Qualification Report for ATR Cycles 147A, 148A, 148B, and 149A PDF eBook
Author
Publisher
Pages
Release 2011
Genre
ISBN

Download AGR-2 Data Qualification Report for ATR Cycles 147A, 148A, 148B, and 149A Book in PDF, Epub and Kindle

This report presents the data qualification status of fuel irradiation data from the first four reactor cycles (147A, 148A, 148B, and 149A) of the on-going second Advanced Gas Reactor (AGR-2) experiment as recorded in the NGNP Data Management and Analysis System (NDMAS). This includes data received by NDMAS from the period June 22, 2010 through May 21, 2011. AGR-2 is the second in a series of eight planned irradiation experiments for the AGR Fuel Development and Qualification Program, which supports development of the very high temperature gas-cooled reactor (VHTR) under the Next Generation Nuclear Plant (NGNP) Project. Irradiation of the AGR-2 test train is being performed at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) and is planned for 600 effective full power days (approximately 2.75 calendar years) (PLN-3798). The experiment is intended to demonstrate the performance of UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Data qualification status of the AGR-1 experiment was reported in INL/EXT-10-17943 (Abbott et al. 2010).

AGR-1 Irradiation Test Final As-Run Report, Rev 2

AGR-1 Irradiation Test Final As-Run Report, Rev 2
Title AGR-1 Irradiation Test Final As-Run Report, Rev 2 PDF eBook
Author
Publisher
Pages
Release 2015
Genre
ISBN

Download AGR-1 Irradiation Test Final As-Run Report, Rev 2 Book in PDF, Epub and Kindle

This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39?1025 n/m2 (E>0.18 MeV). We'll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one capsule significantly exceeding this value. A maximum R/B of around 2?10-7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.

AGR-1 Irradiation Test Final As-Run Report, Rev. 3

AGR-1 Irradiation Test Final As-Run Report, Rev. 3
Title AGR-1 Irradiation Test Final As-Run Report, Rev. 3 PDF eBook
Author
Publisher
Pages 115
Release 2015
Genre
ISBN

Download AGR-1 Irradiation Test Final As-Run Report, Rev. 3 Book in PDF, Epub and Kindle

This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 x 1025 n/m2 (E>0.18 MeV). We'll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one capsule significantly exceeding this value. A maximum R/B of around 2 x 10-7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.

AGR-1 Irradiation Test Final As-Run Report

AGR-1 Irradiation Test Final As-Run Report
Title AGR-1 Irradiation Test Final As-Run Report PDF eBook
Author
Publisher
Pages
Release 2012
Genre
ISBN

Download AGR-1 Irradiation Test Final As-Run Report Book in PDF, Epub and Kindle

This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39?1025 n/m2 (E>0.18 MeV). We'll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one capsule significantly exceeding this value. A maximum R/B of around 2?10-7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.