Statistics in Scientific Investigation
Title | Statistics in Scientific Investigation PDF eBook |
Author | Glen McPherson |
Publisher | Springer Science & Business Media |
Pages | 689 |
Release | 2013-03-09 |
Genre | Business & Economics |
ISBN | 1475742908 |
In this book I have taken on the challenge of providing an insight into Statistics and a blueprint for statistical application for a wide audience. For students in the sciences and related professional areas and for researchers who may need to apply Statistics in the course of scientific experimenta tion, the development emphasizes the manner in which Statistics fits into the framework of the scientific method. Mathematics students will find a unified, but non-mathematical structure for Statistics which can provide the motivation for the theoretical development found in standard texts on theoretical Statistics. For statisticians and students of Statistics, the ideas contained in the book and their manner of development may aid in the de velopment of better communications between scientists and statisticians. The demands made of readers are twofold: a minimal mathematical prerequisite which is simply an ability to comprehend formulae containing mathematical variables, such as those derived from a high school course in algebra or the equivalent; a grasp of the process of scientific modeling which comes with ei ther experience in scientific experimentation or practice with solving mathematical problems.
Statistics and Scientific Method
Title | Statistics and Scientific Method PDF eBook |
Author | Peter J. Diggle |
Publisher | Oxford University Press |
Pages | 192 |
Release | 2011-08-11 |
Genre | Mathematics |
ISBN | 0199543186 |
An antidote to technique-orientated approaches, this text avoids the recipe-book style, giving the reader a clear understanding of how core statistical ideas of experimental design, modelling, and data analysis are integral to the scientific method. No prior knowledge of statistics is required and a range of scientific disciplines are covered.
Reproducibility and Replicability in Science
Title | Reproducibility and Replicability in Science PDF eBook |
Author | National Academies of Sciences, Engineering, and Medicine |
Publisher | National Academies Press |
Pages | 257 |
Release | 2019-10-20 |
Genre | Science |
ISBN | 0309486165 |
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Introduction to Statistical Investigations
Title | Introduction to Statistical Investigations PDF eBook |
Author | Nathan Tintle |
Publisher | Wiley Global Education |
Pages | 699 |
Release | 2015-12-17 |
Genre | Mathematics |
ISBN | 1119154316 |
Introduction to Statistical Investigations leads students to learn about the process of conducting statistical investigations from data collection, to exploring data, to statistical inference, to drawing appropriate conclusions. The text is designed for a one-semester introductory statistics course. It focuses on genuine research studies, active learning, and effective use of technology. Simulations and randomization tests introduce statistical inference, yielding a strong conceptual foundation that bridges students to theory-based inference approaches. Repetition allows students to see the logic and scope of inference. This implementation follows the GAISE recommendations endorsed by the American Statistical Association.
Research Methods and Statistics
Title | Research Methods and Statistics PDF eBook |
Author | Janie H. Wilson |
Publisher | SAGE Publications |
Pages | 441 |
Release | 2016-07-21 |
Genre | Psychology |
ISBN | 1483392163 |
This innovative text offers a completely integrated approach to teaching research methods and statistics by presenting a research question accompanied by the appropriate methods and statistical procedures needed to address it. Research questions and designs become more complex as chapters progress, building on simpler questions to reinforce student learning. Using a conversational style and research examples from published works, this comprehensive book walks readers through the entire research process and includes ample pedagogical support for SPSS, Excel, and APA style.
Cohort Analysis in Social Research
Title | Cohort Analysis in Social Research PDF eBook |
Author | W.M. Mason |
Publisher | Springer Science & Business Media |
Pages | 402 |
Release | 2012-12-06 |
Genre | Business & Economics |
ISBN | 1461385369 |
The existence of the present volume can be traced to methodological concerns about cohort analysis, all of which were evident throughout most of the social sciences by the late 1970s. For some social scientists, they became part of a broader discussion concerning the need for new analytical techniques for research based on longitudinal data. In 1976, the Social Science Research Council (SSRC), with funds from the National Institute of Education, established a Committee on the Methodology of Longitudinal Research. (The scholars who comprised this committee are listed at the front of this volume. ) As part of the efforts of this Committee, an interdisciplinary conference on cohort analysis was held in the summer of 1979, in Snowmass, Colorado. Much of the work presented here stems from that conference, the purpose of which was to promote the development of general methodological tools for the study of social change. The conference included five major presentations by (1) William Mason and Herbert Smith, (2) Karl J6reskog and Dag S6rbom, (3) Gregory Markus, (4) John Hobcraft, Jane Menken and Samuel Preston, and (5) Stephen Fienberg and William Mason. The formal presentations were each followed by extensive discussion, which involved as participants: Paul Baltes, William Butz, Philip Converse, Otis Dudley Duncan, David Freedman, William Meredith, John Nesselroade, Daniel Price, Thomas Pullum, Peter Read, Matilda White Riley, Norman Ryder, Warren Sanderson, Warner Schaie, Burton Singer, Nancy Tuma, Harrison White, and Halliman Winsborough.
Statistics Done Wrong
Title | Statistics Done Wrong PDF eBook |
Author | Alex Reinhart |
Publisher | No Starch Press |
Pages | 177 |
Release | 2015-03-01 |
Genre | Mathematics |
ISBN | 1593276206 |
Scientific progress depends on good research, and good research needs good statistics. But statistical analysis is tricky to get right, even for the best and brightest of us. You'd be surprised how many scientists are doing it wrong. Statistics Done Wrong is a pithy, essential guide to statistical blunders in modern science that will show you how to keep your research blunder-free. You'll examine embarrassing errors and omissions in recent research, learn about the misconceptions and scientific politics that allow these mistakes to happen, and begin your quest to reform the way you and your peers do statistics. You'll find advice on: –Asking the right question, designing the right experiment, choosing the right statistical analysis, and sticking to the plan –How to think about p values, significance, insignificance, confidence intervals, and regression –Choosing the right sample size and avoiding false positives –Reporting your analysis and publishing your data and source code –Procedures to follow, precautions to take, and analytical software that can help Scientists: Read this concise, powerful guide to help you produce statistically sound research. Statisticians: Give this book to everyone you know. The first step toward statistics done right is Statistics Done Wrong.