Improving and Accelerating Therapeutic Development for Nervous System Disorders
Title | Improving and Accelerating Therapeutic Development for Nervous System Disorders PDF eBook |
Author | Institute of Medicine |
Publisher | National Academies Press |
Pages | 107 |
Release | 2014-02-06 |
Genre | Medical |
ISBN | 0309292492 |
Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.
Statistical Issues in Drug Development
Title | Statistical Issues in Drug Development PDF eBook |
Author | Stephen S. Senn |
Publisher | John Wiley & Sons |
Pages | 523 |
Release | 2008-02-28 |
Genre | Medical |
ISBN | 9780470723579 |
Drug development is the process of finding and producingtherapeutically useful pharmaceuticals, turning them into safe andeffective medicine, and producing reliable information regardingthe appropriate dosage and dosing intervals. With regulatoryauthorities demanding increasingly higher standards in suchdevelopments, statistics has become an intrinsic and criticalelement in the design and conduct of drug development programmes. Statistical Issues in Drug Development presents anessential and thought provoking guide to the statistical issues andcontroversies involved in drug development. This highly readable second edition has been updated toinclude: Comprehensive coverage of the design and interpretation ofclinical trials. Expanded sections on missing data, equivalence, meta-analysisand dose finding. An examination of both Bayesian and frequentist methods. A new chapter on pharmacogenomics and expanded coverage ofpharmaco-epidemiology and pharmaco-economics. Coverage of the ICH guidelines, in particular ICH E9,Statistical Principles for Clinical Trials. It is hoped that the book will stimulate dialogue betweenstatisticians and life scientists working within the pharmaceuticalindustry. The accessible and wide-ranging coverage make itessential reading for both statisticians and non-statisticiansworking in the pharmaceutical industry, regulatory bodies andmedical research institutes. There is also much to benefitundergraduate and postgraduate students whose courses include amedical statistics component.
The Prevention and Treatment of Missing Data in Clinical Trials
Title | The Prevention and Treatment of Missing Data in Clinical Trials PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 163 |
Release | 2010-12-21 |
Genre | Medical |
ISBN | 030918651X |
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Strategy and Statistics in Clinical Trials
Title | Strategy and Statistics in Clinical Trials PDF eBook |
Author | Joseph Tal |
Publisher | Academic Press |
Pages | 279 |
Release | 2011-07-14 |
Genre | Mathematics |
ISBN | 0123869099 |
Delineates the statistical building blocks and concepts of clinical trials.
Statistical Methods in Drug Combination Studies
Title | Statistical Methods in Drug Combination Studies PDF eBook |
Author | Wei Zhao |
Publisher | CRC Press |
Pages | 236 |
Release | 2014-12-19 |
Genre | Mathematics |
ISBN | 1482216752 |
The growing interest in using combination drugs to treat various complex diseases has spawned the development of many novel statistical methodologies. The theoretical development, coupled with advances in statistical computing, makes it possible to apply these emerging statistical methods in in vitro and in vivo drug combination assessments. Howeve
Small Clinical Trials
Title | Small Clinical Trials PDF eBook |
Author | Institute of Medicine |
Publisher | National Academies Press |
Pages | 221 |
Release | 2001-01-01 |
Genre | Medical |
ISBN | 0309171148 |
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Sharing Clinical Trial Data
Title | Sharing Clinical Trial Data PDF eBook |
Author | Institute of Medicine |
Publisher | National Academies Press |
Pages | 236 |
Release | 2015-04-20 |
Genre | Medical |
ISBN | 0309316324 |
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.